Skip to main content
Log in

Ultrafast optical investigation of carrier and spin dynamics in low-dimensional perovskites

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Low-dimensional perovskite (PVK) materials have attracted significant research interest, because of their quantum-confined effect, tunable band gap structures, and higher stability than that of three-dimensional (3D) PVKs. In semiconductor optoelectronic devices, high speed and small size are closely interlinked. The development of high-speed devices requires researchers to fully understand the properties of materials, especially the dynamic processes such as carrier recombination, separation, and transport, which often play a crucial role in the performance of devices. As an indispensable part of dynamic research, spin relaxation is also of great significance in studying the properties of materials and explore possible applications. Lead halide PVK materials have strong spin-orbit coupling (SOC), which provides a basis for information storage and processing by using spin degrees of freedom. Therefore, studying the carrier and spin dynamics of low-dimensional PVKs is an effective way to understand the internal properties of low-dimensional PVKs clearly. This paper summarizes the latest research progress on the ultrafast carrier and spin dynamics in low-dimensional PVKs, to comprehensively understand their carrier and spin behaviors and present an outlook for relevant studies in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rose G. Beschreibung einiger neuen mineralien des urals. Ann Phys Chem, 1839, 124: 551–573

    Article  Google Scholar 

  2. Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc, 2012, 134: 17396–17399

    Article  Google Scholar 

  3. Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131: 6050–6051

    Article  Google Scholar 

  4. Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotech, 2014, 9: 687–692

    Article  Google Scholar 

  5. Xing G, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13: 476–480

    Article  Google Scholar 

  6. Blancon J C, Tsai H, Nie W, et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, 355: 1288–1292

    Article  Google Scholar 

  7. Otero-Martínez C, Ye J, Sung J, et al. Colloidal metal-halide perovskite nanoplatelets: Thickness-controlled synthesis, properties, and application in light-emitting diodes. Adv Mater, 2022, 34: 2107105

    Article  Google Scholar 

  8. Su R, Fieramosca A, Zhang Q, et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat Mater, 2021, 20: 1315–1324

    Article  Google Scholar 

  9. Su R, Wang J, Zhao J, et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci Adv, 2018, 4: eaau0244

    Article  Google Scholar 

  10. Akkerman Q A, Motti S G, Srimath Kandada A R, et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J Am Chem Soc, 2016, 138: 1010–1016

    Article  Google Scholar 

  11. Huang Z, Bloom B P, Ni X, et al. Magneto-optical detection of photoinduced magnetism via chirality-induced spin selectivity in 2D chiral hybrid organic-inorganic perovskites. ACS Nano, 2020, 14: 10370–10375

    Article  Google Scholar 

  12. Jana A, Park S, Cho S, et al. Monodispersed perovskite quantum wells for efficient leds. Matter, 2022, 5: 384–386

    Article  Google Scholar 

  13. Kim Y H, Zhai Y, Lu H, et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science, 2021, 371: 1129–1133

    Article  Google Scholar 

  14. Li M, Wei Q, Muduli S K, et al. Enhanced exciton and photon confinement in ruddlesden-popper perovskite microplatelets for highly stable low-threshold polarized lasing. Adv Mater, 2018, 30: 1707235

    Article  Google Scholar 

  15. Lin K, Xing J, Quan L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562: 245–248

    Article  Google Scholar 

  16. Qin C, Sandanayaka A S D, Zhao C, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585: 53–57

    Article  Google Scholar 

  17. Schlaus A P, Spencer M S, Miyata K, et al. How lasing happens in CsPbBr3 perovskite nanowires. Nat Commun, 2019, 10: 265

    Article  Google Scholar 

  18. Shang Y, Li G, Liu W, et al. Quasi-2D inorganic CsPbBr3 perovskite for efficient and stable light-emitting diodes. Adv Funct Mater, 2018, 28: 1801193

    Article  Google Scholar 

  19. Wang B, Iocozzia J, Zhang M, et al. The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chem Soc Rev, 2019, 48: 4854–4891

    Article  Google Scholar 

  20. Wang K, Li Z, Zhou F, et al. Ruddlesden-popper 2D component to stabilize γ-CsPbI3 perovskite phase for stable and efficient photovoltaics. Adv Energy Mater, 2019, 9: 1902529

    Article  Google Scholar 

  21. Zhang Q, Su R, Liu X, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater, 2016, 26: 6238–6245

    Article  Google Scholar 

  22. Li D, Zhao H, Li L, et al. Graphene-sensitized perovskite oxide monolayer nanosheets for efficient photocatalytic reaction. Adv Funct Mater, 2018, 28: 1806284

    Article  Google Scholar 

  23. Li L, Li J, Lan S, et al. Two-step growth of 2D organic-inorganic perovskite microplates and arrays for functional optoelectronics. J Phys Chem Lett, 2018, 9: 4532–4538

    Article  Google Scholar 

  24. Niu W, Eiden A, Vijaya Prakash G, et al. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors. Appl Phys Lett, 2014, 104: 171111

    Article  Google Scholar 

  25. Samu G F, Balog Á, De Angelis F, et al. Electrochemical hole injection selectively expels iodide from mixed halide perovskite films. J Am Chem Soc, 2019, 141: 10812–10820

    Article  Google Scholar 

  26. Soe C M M, Stoumpos C C, Kepenekian M, et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)−(CH3NH3)nPbnI3n+1: Structure, properties, and photovoltaic performance. J Am Chem Soc, 2017, 139: 16297–16309

    Article  Google Scholar 

  27. Yaffe O, Chernikov A, Norman Z M, et al. Excitons in ultrathin organic-inorganic perovskite crystals. Phys Rev B, 2015, 92: 045414

    Article  Google Scholar 

  28. Mao L, Stoumpos C C, Kanatzidis M G. Two-dimensional hybrid halide perovskites: Principles and promises. J Am Chem Soc, 2019, 141: 1171–1190

    Article  Google Scholar 

  29. Ma W, Wu F, Yu P, et al. Carbon support tuned electrocatalytic activity of a single-site metal-organic framework toward the oxygen reduction reaction. Chem Sci, 2021, 12: 7908–7917

    Article  Google Scholar 

  30. Xu Y, Jiao B, Song T B, et al. Zero-dimensional Cs2TeI6 perovskite: Solution-processed thick films with high X-ray sensitivity. ACS Photon, 2019, 6: 196–203

    Article  Google Scholar 

  31. Zhou C, Tian Y, Wang M, et al. Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew Chem Int Ed, 2017, 56: 9018–9022

    Article  Google Scholar 

  32. Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14: 636–642

    Article  Google Scholar 

  33. Wu Z, Chen J, Mi Y, et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers. Adv Opt Mater, 2018, 6: 1800674

    Article  Google Scholar 

  34. Yakunin S, Protesescu L, Krieg F, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun, 2015, 6: 8056

    Article  Google Scholar 

  35. Sun W, Li F, Tao J, et al. Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 µm. Nanoscale, 2022, 14: 5994–5998

    Article  Google Scholar 

  36. Jin C, Ma E Y, Karni O, et al. Ultrafast dynamics in van der Waals heterostructures. Nat Nanotech, 2018, 13: 994–1003

    Article  Google Scholar 

  37. Jiang Y, Wang X, Pan A. Properties of excitons and photogenerated charge carriers in metal halide perovskites. Adv Mater, 2019, 31: 1806671

    Article  Google Scholar 

  38. Sum T C, Mathews N, Xing G, et al. Spectral features and charge dynamics of lead halide perovskites: Origins and interpretations. Acc Chem Res, 2016, 49: 294–302

    Article  Google Scholar 

  39. Yang B, Han K. Charge-carrier dynamics of lead-free halide perovskite nanocrystals. Acc Chem Res, 2019, 52: 3188–3198

    Article  Google Scholar 

  40. Das S, Wang Y, Dai Y, et al. Ultrafast transient sub-bandgap absorption of monolayer MoS2. Light Sci Appl, 2021, 10: 27

    Article  Google Scholar 

  41. Mondal N, De A, Das S, et al. Ultrafast carrier dynamics of metal halide perovskite nanocrystals and perovskite-composites. Nanoscale, 2019, 11: 9796–9818

    Article  Google Scholar 

  42. Quan L N, Park Y, Guo P, et al. Vibrational relaxation dynamics in layered perovskite quantum wells. Proc Natl Acad Sci USA, 2021, 118: e2104425118

    Article  Google Scholar 

  43. Vaxenburg R, Rodina A, Shabaev A, et al. Nonradiative auger recombination in semiconductor nanocrystals. Nano Lett, 2015, 15: 2092–2098

    Article  Google Scholar 

  44. Shen J, Zhang X, Das S, et al. Unexpectedly strong auger recombination in halide perovskites. Adv Energy Mater, 2018, 8: 1801027

    Article  Google Scholar 

  45. Chen P, Atallah T L, Lin Z, et al. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature, 2021, 599: 404–410

    Article  Google Scholar 

  46. Pinchetti V, Anand A, Akkerman Q A, et al. Trap-mediated two-step sensitization of manganese dopants in perovskite nanocrystals. ACS Energy Lett, 2019, 4: 85–93

    Article  Google Scholar 

  47. Olshansky J H, Balan A D, Ding T X, et al. Temperature-dependent hole transfer from photoexcited quantum dots to molecular species: Evidence for trap-mediated transfer. ACS Nano, 2017, 11: 8346–8355

    Article  Google Scholar 

  48. Wang S, Yan L, Zhu W, et al. Suppressing the formation of tin vacancy yields efficient lead-free perovskite solar cells. Nano Energy, 2022, 99: 107416

    Article  Google Scholar 

  49. Zhang T, Dement D B, Ferry V E, et al. Intrinsic measurements of exciton transport in photovoltaic cells. Nat Commun, 2019, 10: 1156

    Article  Google Scholar 

  50. Tao W, Zhou Q, Zhu H. Dynamic polaronic screening for anomalous exciton spin relaxation in two-dimensional lead halide perovskites. Sci Adv, 2020, 6: eabb7132

    Article  Google Scholar 

  51. Luo Z, Li Q, Zhang L, et al. 0D Cs3Cu2X5 (X=I, Br, and Cl) nanocrystals: Colloidal syntheses and optical properties. Small, 2020, 16: 1905226

    Article  Google Scholar 

  52. Yuan Z, Zhou C, Tian Y, et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat Commun, 2017, 8: 14051

    Article  Google Scholar 

  53. Cheng P, Sun L, Feng L, et al. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals. Angew Chem Int Ed, 2019, 58: 16087–16091

    Article  Google Scholar 

  54. Ashner M N, Shulenberger K E, Krieg F, et al. Size-dependent biexciton spectrum in CsPbBr3 perovskite nanocrystals. ACS Energy Lett, 2019, 4: 2639–2645

    Article  Google Scholar 

  55. Lubin G, Yaniv G, Kazes M, et al. Resolving the controversy in biexciton binding energy of cesium lead halide perovskite nanocrystals through heralded single-particle spectroscopy. ACS Nano, 2021, 15: 19581–19587

    Article  Google Scholar 

  56. Hanson R, Kouwenhoven L P, Petta J R, et al. Spins in few-electron quantum dots. Rev Mod Phys, 2007, 79: 1217–1265

    Article  Google Scholar 

  57. Boross P, Dóra B, Kiss A, et al. A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors. Sci Rep, 2013, 3: 3233

    Article  Google Scholar 

  58. Wang J, Zhang C, Liu H, et al. Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. Nat Commun, 2019, 10: 129

    Article  Google Scholar 

  59. Rechcińska K, Król M, Mazur R, et al. Engineering spin-orbit synthetic hamiltonians in liquid-crystal optical cavities. Science, 2019, 366: 727–730

    Article  Google Scholar 

  60. Cui Q, Cheng J G, Fan W, et al. Slater insulator in iridate perovskites with strong spin-orbit coupling. Phys Rev Lett, 2016, 117: 176603

    Article  Google Scholar 

  61. Mohd Yusoff A R, Mahata A, Vasilopoulou M, et al. Observation of large rashba spin-orbit coupling at room temperature in compositionally engineered perovskite single crystals and application in high performance photodetectors. Mater Today, 2021, 46: 18–27

    Article  Google Scholar 

  62. Venkatesan N R, Labram J G, Chabinyc M L. Charge-carrier dynamics and crystalline texture of layered ruddlesden-popper hybrid lead iodide perovskite thin films. ACS Energy Lett, 2018, 3: 380–386

    Article  Google Scholar 

  63. Lin D, Ma L, Ni W, et al. Unveiling hot carrier relaxation and carrier transport mechanisms in quasi-two-dimensional layered perovskites. J Mater Chem A, 2020, 8: 25402–25410

    Article  Google Scholar 

  64. Yu J, Kong J, Hao W, et al. Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites. Adv Mater, 2018, 31: 1806385

    Article  Google Scholar 

  65. Fang H, Yang J, Adjokatse S, et al. Band-edge exciton fine structure and exciton recombination dynamics in single crystals of layered hybrid perovskites. Adv Funct Mater, 2020, 30: 1907979

    Article  Google Scholar 

  66. Wang J, Li J, Lan S, et al. Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors. ACS Nano, 2019, 13: 5473–5484

    Article  Google Scholar 

  67. Wang X, Li Y, Xu Y, et al. Solution-processed halide perovskite single crystals with intrinsic compositional gradients for X-ray detection. Chem Mater, 2020, 32: 4973–4983

    Article  Google Scholar 

  68. Yu S, Abdellah M, Pullerits T, et al. Asymmetric spacer in Dion-Jacobson halide perovskites induces staggered alignment to direct out-of-plane carrier transport and enhances ambient stability simultaneously. Adv Funct Mater, 2021, 31: 2104342

    Article  Google Scholar 

  69. Li P, Liang C, Liu X L, et al. Low-dimensional perovskites with diammonium and monoammonium alternant cations for high-performance photovoltaics. Adv Mater, 2019, 31: 1901966

    Article  Google Scholar 

  70. Zhang Y, Wang P, Tang M C, et al. Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics. J Am Chem Soc, 2019, 141: 2684–2694

    Article  Google Scholar 

  71. Feng J, Gong C, Gao H, et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nat Electron, 2018, 1: 404–410

    Article  Google Scholar 

  72. He M, Jiang Y, Liu Q, et al. Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature. Phys Rev Appl, 2020, 13: 044072

    Article  Google Scholar 

  73. Zeng Z, Sun M, Zhang S, et al. Rare-earth-based perovskite Cs2AgScCl6:Bi for strong full visible spectrum emission. Adv Funct Mater, 2022, 32: 2204780

    Article  Google Scholar 

  74. Zhang X, Wu X, Liu X, et al. Heterostructural CsPbX3-PbS (X=Cl, Br, I) quantum dots with tunable Vis-NIR dual emission. J Am Chem Soc, 2020, 142: 4464–4471

    Article  Google Scholar 

  75. Huang H, Hao M, Song Y, et al. Dynamic passivation in perovskite quantum dots for specific ammonia detection at room temperature. Small, 2020, 16: 1904462

    Article  Google Scholar 

  76. Zhang C, Sun D, Sheng C X, et al. Magnetic field effects in hybrid perovskite devices. Nat Phys, 2015, 11: 427‣434

    Article  Google Scholar 

  77. Neumann T, Feldmann S, Moser P, et al. Manganese doping for enhanced magnetic brightening and circular polarization control of dark excitons in paramagnetic layered hybrid metal-halide perovskites. Nat Commun, 2021, 12: 3489

    Article  Google Scholar 

  78. Kulish V V, Malyi O I, Persson C, et al. Adsorption of metal adatoms on single-layer phosphorene. Phys Chem Chem Phys, 2015, 17: 992–1000

    Article  Google Scholar 

  79. Shcherbakov D, Stepanov P, Memaran S, et al. Layer- and gate-tunable spin-orbit coupling in a high-mobility few-layer semiconductor. Sci Adv, 2021, 7: eabe2892

    Article  Google Scholar 

  80. Giovanni D, Chong W K, Liu Y Y F, et al. Coherent spin and quasiparticle dynamics in solution-processed layered 2D lead halide perovskites. Adv Sci, 2018, 5: 1800664

    Article  Google Scholar 

  81. Naaman R, Waldeck D H. Chiral-induced spin selectivity effect. J Phys Chem Lett, 2012, 3: 2178–2187

    Article  Google Scholar 

  82. Li X, Nan J, Pan X. Chiral induced spin selectivity as a spontaneous intertwined order. Phys Rev Lett, 2020, 125: 263002

    Article  Google Scholar 

  83. Rikken G L J A, Avarvari N. Dielectric magnetochiral anisotropy. Nat Commun, 2022, 13: 3564

    Article  Google Scholar 

  84. Long G, Jiang C, Sabatini R, et al. Spin control in reduced-dimensional chiral perovskites. Nat Photon, 2018, 12: 528–533

    Article  Google Scholar 

  85. Pan R, Wang K, Yu Z G. Magnetic-field manipulation of circularly polarized photoluminescence in chiral perovskites. Mater Horiz, 2022, 9: 740–747

    Article  Google Scholar 

  86. Zhang K, Zhao J, Hu Q, et al. Room-temperature magnetic field effect on excitonic photoluminescence in perovskite nanocrystals. Adv Mater, 2021, 33: 2008225

    Article  Google Scholar 

  87. Liu Z, Zhang C, Liu X, et al. Chiral hybrid perovskite single-crystal nanowire arrays for high-performance circularly polarized light detection. Adv Sci, 2021, 8: 2102065

    Article  Google Scholar 

  88. Tang Y, Yin C, Jing Q, et al. Quantized exciton motion and fine energy-level structure of a single perovskite nanowire. Nano Lett, 2022, 22: 2907–2914

    Article  Google Scholar 

  89. Baskoutas S, Terzis A F. Size-dependent band gap of colloidal quantum dots. J Appl Phys, 2006, 99: 013708

    Article  Google Scholar 

  90. Poulsen F, Hansen T. Band gap energy of gradient core-shell quantum dots. J Phys Chem C, 2017, 121: 13655–13659

    Article  Google Scholar 

  91. Li Y, Luo X, Liu Y, et al. Size- and composition-dependent exciton spin relaxation in lead halide perovskite quantum dots. ACS Energy Lett, 2020, 5: 1701–1708

    Article  Google Scholar 

  92. Elliott R J. Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys Rev, 1954, 96: 266–279

    Article  Google Scholar 

  93. Yafet Y. g Factors and spin-lattice relaxation of conduction electrons. J Phys C: Phys Solid State, 1963, 14: 1–98

    Google Scholar 

  94. Dyakonov M I, Perel V I. Current-induced spin orientation of electrons in semiconductors. Phys Lett A, 1971, 35: 459–460

    Article  Google Scholar 

  95. Han Y, Liang W, Lin X, et al. Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots. Nat Mater, 2022, 21: 1282–1289

    Article  Google Scholar 

  96. Liang A, Gao Y, Asadpour R, et al. Ligand-driven grain engineering of high mobility two-dimensional perovskite thin-film transistors. J Am Chem Soc, 2021, 143: 15215–15223

    Article  Google Scholar 

  97. Quan L N, Yuan M, Comin R, et al. Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc, 2016, 138: 2649–2655

    Article  Google Scholar 

  98. Lin Y, Bai Y, Fang Y, et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett, 2017, 2: 1571–1572

    Article  Google Scholar 

  99. Smith M D, Connor B A, Karunadasa H I. Tuning the luminescence of layered halide perovskites. Chem Rev, 2019, 119: 3104–3139

    Article  Google Scholar 

  100. Zhang Q, Liu S, He M, et al. Stable lead-free tin halide perovskite with operational stability >1200 h by suppressing Tin(II) oxidation. Angew Chem Int Ed, 2022, 61: e202205463

    Article  Google Scholar 

  101. Li X L, Li Z, Zhang G, et al. Lead-free perovskite [H3NC6H4NH3]−CuBr4 with both a bandgap of 1.43 eV and excellent stability. J Mater Chem A, 2020, 8: 5484–5488

    Article  Google Scholar 

  102. Wu T, Liu X, Luo X, et al. Lead-free tin perovskite solar cells. Joule, 2021, 5: 863–886

    Article  Google Scholar 

  103. Leng K, Li R, Lau S P, et al. Ferroelectricity and rashba effect in 2D organic-inorganic hybrid perovskites. Trends Chem, 2021, 3: 716–732

    Article  Google Scholar 

  104. Frohna K, Deshpande T, Harter J, et al. Inversion symmetry and bulk rashba effect in methylammonium lead iodide perovskite single crystals. Nat Commun, 2018, 9: 1829

    Article  Google Scholar 

  105. Stranks S D, Plochocka P. The influence of the rashba effect. Nat Mater, 2018, 17: 381–382

    Article  Google Scholar 

  106. Yin J, Naphade R, Maity P, et al. Manipulation of hot carrier cooling dynamics in two-dimensional dion-jacobson hybrid perovskites via rashba band splitting. Nat Commun, 2021, 12: 3995

    Article  Google Scholar 

  107. Xiong M, Zou W, Fan K, et al. Tailoring phase purity in the 2D/3D perovskite heterostructures using lattice mismatch. ACS Energy Lett, 2022, 7: 550–559

    Article  Google Scholar 

  108. Kepenekian M, Traore B, Blancon J C, et al. Concept of lattice mismatch and emergence of surface states in two-dimensional hybrid perovskite quantum wells. Nano Lett, 2018, 18: 5603–5609

    Article  Google Scholar 

  109. Moloney E G, Yeddu V, Saidaminov M I. Strain engineering in halide perovskites. ACS Mater Lett, 2020, 2: 1495–1508

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Jiang or HongHua Fang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52072117, 62075115, and 21703059).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Jiang, Y. & Fang, H. Ultrafast optical investigation of carrier and spin dynamics in low-dimensional perovskites. Sci. China Technol. Sci. 67, 2–18 (2024). https://doi.org/10.1007/s11431-022-2285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2285-1

Keywords

Navigation