Skip to main content
Log in

Liquid metal-based textiles for smart clothes

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The smart clothes emerge as a new generation of garments developed in the scientific and industrial communities, gaining increasing attention due to the real-time responses to exterior environments or stimuli. Owing to the unique merits of liquid metal (LM) such as excellent fluidity, high conductivity and intrinsic stretchability in ambient environment, LM-based smart textiles are widely applied in chemical sensors, wearable electronics and stretchable devices. This review is dedicated to summarizing different preparation methods and functions of LM-based textiles (LMTs) for smart clothes, which consists of the design principles, the fabrication strategies, the working mechanism of LMTs, and the tremendous applications sorted by the features of LM. Typical methods of the synthesis to build LMTs are divided into two domains classified by spatial arrangement. One strategy is the exterior decoration with LM, while the other is interior encapsulation of LM. Moreover, the primary applications of LMT-based smart clothes have been illustrated through the utilization of the properties of LM matrix. The categorization of LMTs aims to facilitate further investigation and research in the future development of LM-based smart clothes. Finally, future prospects and opportunities of LMT-based smart clothes are discussed in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang H, Li R, Cao Y, et al. Liquid metal fibers. Adv Fiber Mater, 2022, 4: 987–1004

    Article  Google Scholar 

  2. Zhu M, Kikutani T, Liu T, et al. Fiber changes our life. Adv Fiber Mater, 2019, 1: 1–2

    Article  Google Scholar 

  3. Lin R, Kim H J, Achavananthadith S, et al. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat Commun, 2022, 13: 2190

    Article  Google Scholar 

  4. Song J, Chen S, Sun L, et al. Mechanically and electronically robust transparent organohydrogel fibers. Adv Mater, 2020, 32: 1906994

    Article  Google Scholar 

  5. Wang C, Li X, Gao E, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater, 2016, 28: 6640–6648

    Article  Google Scholar 

  6. Lai M F, Huang C H, Lou C W, et al. Effects of different structures on the functional and mechanical properties of elastic knitted fabrics. J Textile Institute, 2022, 113: 332–340

    Article  Google Scholar 

  7. Weng W, Chen P, He S, et al. Smart electronic textiles. Angew Chem Int Ed, 2016, 55: 6140–6169

    Article  Google Scholar 

  8. Shi J, Liu S, Zhang L, et al. Smart textile-integrated microelectronic systems for wearable applications. Adv Mater, 2019, 32: 1901958

    Article  Google Scholar 

  9. Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater, 2015, 27: 2433–2439

    Article  Google Scholar 

  10. Luo Y, Li Y, Sharma P, et al. Learning human-environment interactions using conformal tactile textiles. Nat Electron, 2021, 4: 193–201

    Article  Google Scholar 

  11. Zhang L, Liu Z, Wu X, et al. A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv Mater, 2019, 31: 1901402

    Article  Google Scholar 

  12. Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature, 2021, 591: 240–245

    Article  Google Scholar 

  13. Wang L, Zhang F, Liu Y, et al. Shape memory polymer fibers: Materials, structures, and applications. Adv Fiber Mater, 2022, 4: 5–23

    Article  Google Scholar 

  14. Tonazzini A, Mintchev S, Schubert B, et al. Variable stiffness fiber with self-healing capability. Adv Mater, 2016, 28: 10142–10148

    Article  Google Scholar 

  15. Wang Y, Niu W, Lo C, et al. Interactively full-color changeable electronic fiber sensor with high stretchability and rapid response. Adv Funct Mater, 2020, 30: 2000356

    Article  Google Scholar 

  16. Lin R, Kim H J, Achavananthadith S, et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat Commun, 2020, 11: 444

    Article  Google Scholar 

  17. Persson N K, Martinez J G, Zhong Y, et al. Actuating textiles: Next generation of smart textiles. Adv Mater Technol, 2018, 3: 1700397

    Article  Google Scholar 

  18. Guan Y, Agra-Kooijman D M, Fu S, et al. Responsive liquid-crystalclad fibers for advanced textiles and wearable sensors. Adv Mater, 2019, 31: 1902168

    Article  Google Scholar 

  19. Jia T, Wang Y, Dou Y, et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv Funct Mater, 2019, 29: 1808241

    Article  Google Scholar 

  20. Shi Q, Sun J, Hou C, et al. Advanced functional fiber and smart textile. Adv Fiber Mater, 2022, 1: 3–31

    Article  Google Scholar 

  21. Ma W, Zhang Y, Pan S, et al. Smart fibers for energy conversion and storage. Chem Soc Rev, 2021, 50: 7009–7061

    Article  Google Scholar 

  22. Ghahremani Honarvar M, Latifi M. Overview of wearable electronics and smart textiles. J Textile Institute, 2017, 108: 631–652

    Article  Google Scholar 

  23. Li X, Chen S, Peng Y, et al. Materials, preparation strategies, and wearable sensor applications of conductive fibers: A review. Sensors, 2022, 22: 3028

    Article  Google Scholar 

  24. Liu H, Li Q, Bu Y, et al. Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor. Nano Energy, 2019, 66: 104143

    Article  Google Scholar 

  25. Wong Y C, Ang B C, Haseeb A S M A, et al. Conducting polymers as chemiresistive gas sensing materials: A Review. J Electrochem Soc, 2020, 167: 037503

    Article  Google Scholar 

  26. Zhou J, Xu X, Xin Y, et al. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv Funct Mater, 2018, 28: 1705591

    Article  Google Scholar 

  27. Lima R M A P, Alcaraz-Espinoza J J, da Silva Jr. F A G, et al. Multifunctional wearable electronic textiles using cotton fibers with polypyrrole and carbon nanotubes. ACS Appl Mater Interfaces, 2018, 10: 13783–13795

    Article  Google Scholar 

  28. Ou M, Qiu W, Huang K, et al. Ultrastretchable liquid metal electrical conductors built-in cloth fiber networks for wearable electronics. ACS Appl Mater Interfaces, 2019, 12: 7673–7678

    Article  Google Scholar 

  29. Liu H, Xin Y, Lou Y, et al. Liquid metal gradient fibers with reversible thermal programmability. Mater Horiz, 2020, 7: 2141–2149

    Article  Google Scholar 

  30. Leber A, Dong C, Chandran R, et al. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat Electron, 2020, 3: 316–326

    Article  Google Scholar 

  31. Bartlett M D, Kazem N, Powell-Palm M J, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci USA, 2017, 114: 2143–2148

    Article  Google Scholar 

  32. Chen G, Wang H, Guo R, et al. Superelastic EGaIn composite fibers sustaining 500% tensile strain with superior electrical conductivity for wearable electronics. ACS Appl Mater Interfaces, 2020, 12: 6112–6118

    Article  Google Scholar 

  33. Zhu S, So J H, Mays R, et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater, 2013, 23: 2308–2314

    Article  Google Scholar 

  34. Li H, Liu J. Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers. Front Energy, 2011, 5: 20–42

    Article  Google Scholar 

  35. Wang H, Wang C, Jian M, et al. Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Res, 2018, 11: 2347–2356

    Article  Google Scholar 

  36. Guo R, Wang H, Chen G, et al. Smart semiliquid metal fibers with designed mechanical properties for room temperature stimulus response and liquid welding. Appl Mater Today, 2020, 20: 100738

    Article  Google Scholar 

  37. Lin Y, Gordon O, Khan M R, et al. Vacuum filling of complex microchannels with liquid metal. Lab Chip, 2017, 17: 3043–3050

    Article  Google Scholar 

  38. Cooper C B, Arutselvan K, Liu Y, et al. Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv Funct Mater, 2017, 27: 1605630

    Article  Google Scholar 

  39. Yu Y, Guo J, Ma B, et al. Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics. Sci Bull, 2020, 65: 1752–1759

    Article  Google Scholar 

  40. Gao Y, Li H, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE, 2012, 7: e45485

    Article  Google Scholar 

  41. Zheng L, Zhu M, Wu B, et al. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci Adv, 2021, 7: eabg4041

    Article  Google Scholar 

  42. Sha Z, Boyer C, Li G, et al. Electrospun liquid metal/PVDF-HFP nanofiber membranes with exceptional triboelectric performance. Nano Energy, 2022, 92: 106713

    Article  Google Scholar 

  43. Gui H, Tan S C, Wang Q, et al. Spraying printing of liquid metal electronics on various clothes to compose wearable functional device. Sci China Tech Sci, 2017, 60: 306–316

    Article  Google Scholar 

  44. Yang Y, Sun N, Wen Z, et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano, 2018, 12: 2027–2034

    Article  Google Scholar 

  45. Guo R, Wang H, Sun X, et al. Semiliquid metal enabled highly conductive wearable electronics for smart fabrics. ACS Appl Mater Interfaces, 2019, 11: 30019–30027

    Article  Google Scholar 

  46. Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat Mater, 2021, 20: 859–868

    Article  Google Scholar 

  47. Das P, Ganguly S, Perelshtein I, et al. Acoustic green synthesis of graphene-gallium nanoparticles and PEDOT:PSS hybrid coating for textile to mitigate electromagnetic radiation pollution. ACS Appl Nano Mater, 2022, 5: 1644–1655

    Article  Google Scholar 

  48. Zhao X, Xu S, Liu J. Surface tension of liquid metal: Role, mechanism and application. Front Energy, 2017, 11: 535–567

    Article  Google Scholar 

  49. Wang H, Yao Y, He Z, et al. A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Adv Mater, 2019, 31: 1901337

    Article  Google Scholar 

  50. Majidi C, Alizadeh K, Ohm Y, et al. Liquid metal polymer composites: From printed stretchable circuits to soft actuators. Flex Print Electron, 2022, 7: 013002

    Article  Google Scholar 

  51. Xin Y, Peng H, Xu J, et al. Ultrauniform embedded liquid metal in sulfur polymers for recyclable, conductive, and self-healable materials. Adv Funct Mater, 2019, 29: 1808989

    Article  Google Scholar 

  52. Wei S, Yin R, Tang T, et al. Gas-permeable, irritation-free, transparent hydrogel contact lens devices with metal-coated nanofiber mesh for eye interfacing. ACS Nano, 2019, 13: 7920–7929

    Article  Google Scholar 

  53. Du W, Nie J, Ren Z, et al. Inflammation-free and gas-permeable on-skin triboelectric nanogenerator using soluble nanofibers. Nano Energy, 2018, 51: 260–269

    Article  Google Scholar 

  54. Qi X, Zhao H, Wang L, et al. Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem Eng J, 2022, 437: 135382

    Article  Google Scholar 

  55. Eaker C B, Dickey M D. Liquid metal actuation by electrical control of interfacial tension. Appl Phys Rev, 2016, 3: 031103

    Article  Google Scholar 

  56. Khondoker M A H, Sameoto D. Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater Struct, 2016, 25: 093001

    Article  Google Scholar 

  57. Lai Y C, Lu H W, Wu H M, et al. Elastic multifunctional liquid-metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors. Adv Energy Mater, 2021, 11: 2100411

    Article  Google Scholar 

  58. Yao Y, Wang H, Yang X, et al. E-BiInSn enhanced rigidity alterable artificial bandage. In: Proceedings of the 2018 40th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). Honolulu, 2018. 2873–2876

  59. Hu J, Meng H, Li G, et al. A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct, 2012, 21: 053001

    Article  Google Scholar 

  60. Duwez P, Willens R H, Klement Jr. W. Metastable electron compound in Ag-Ge alloys. J Appl Phys, 1960, 31: 1137

    Article  Google Scholar 

  61. Kazem N, Hellebrekers T, Majidi C. Soft multifunctional composites and emulsions with liquid metals. Adv Mater, 2017, 29: 1605985

    Article  Google Scholar 

  62. Dickey M D. Stretchable and soft electronics using liquid metals. Adv Mater, 2017, 29: 1606425

    Article  Google Scholar 

  63. Zhang J, Sheng L, Liu J. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Sci Rep, 2014, 4: 7116

    Article  Google Scholar 

  64. Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev, 2018, 47: 4073–4111

    Article  Google Scholar 

  65. Lide D R. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2004

    Google Scholar 

  66. Hohman J N, Kim M, Wadsworth G A, et al. Directing substrate morphology via self-assembly: Ligand-mediated scission of galliumindium microspheres to the nanoscale. Nano Lett, 2011, 11: 5104–5110

    Article  Google Scholar 

  67. Chechetka S A, Yu Y, Zhen X, et al. Light-driven liquid metal nanotransformers for biomedical theranostics. Nat Commun, 2017, 8: 15432

    Article  Google Scholar 

  68. Lu Y, Hu Q, Lin Y, et al. Transformable liquid-metal nanomedicine. Nat Commun, 2015, 6: 10066

    Article  Google Scholar 

  69. Yan J, Lu Y, Chen G, et al. Advances in liquid metals for biomedical applications. Chem Soc Rev, 2018, 47: 2518–2533

    Article  Google Scholar 

  70. Tang S Y, Khoshmanesh K, Sivan V, et al. Liquid metal enabled pump. Proc Natl Acad Sci USA, 2014, 111: 3304–3309

    Article  Google Scholar 

  71. Park Y G, Lee G Y, Jang J, et al. Liquid metal-based soft electronics for wearable healthcare. Adv Healthcare Mater, 2021, 10: 2002280

    Article  Google Scholar 

  72. Ma K, Liu J. Liquid metal cooling in thermal management of computer chips. Front Energy Power Eng China, 2007, 1: 384–402

    Article  Google Scholar 

  73. Wang X, Guo R, Liu J. Liquid metal based soft robotics: Materials, designs, and applications. Adv Mater Technol, 2018, 4: 1800549

    Article  Google Scholar 

  74. Guo R, Sun X, Yao S, et al. Semi-liquid-metal-(Ni-EGaIn)-based ultraconformable electronic tattoo. Adv Mater Technol, 2019, 4: 1900183

    Article  Google Scholar 

  75. Xiang S, Liu D, Jiang C, et al. Liquid-metal-based dynamic thermoregulating and self-powered electronic skin. Adv Funct Mater, 2021, 31: 2100940

    Article  Google Scholar 

  76. Zhang M, Zhang P, Zhang C, et al. Porous and anisotropic liquid metal composites with tunable reflection ratio for low-temperature electromagnetic interference shielding. Appl Mater Today, 2020, 19: 100612

    Article  Google Scholar 

  77. Kim M, Brown D K, Brand O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat Commun, 2020, 11: 1002

    Article  Google Scholar 

  78. Zavabeti A, Ou J Z, Carey B J, et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science, 2017, 358: 332–335

    Article  Google Scholar 

  79. Liu T, Sen P, Kim C J. Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices. J Microelectromech Syst, 2012, 21: 443–450

    Article  Google Scholar 

  80. Xu Q, Oudalov N, Guo Q, et al. Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Phys Fluids, 2012, 24: 063101

    Article  Google Scholar 

  81. Chang H, Zhang P, Guo R, et al. Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. ACS Appl Mater Interfaces, 2020, 12: 14125–14135

    Article  Google Scholar 

  82. Tang J, Zhao X, Li J, et al. Liquid metal phagocytosis: Intermetallic wetting induced particle internalization. Adv Sci, 2017, 4: 1700024

    Article  Google Scholar 

  83. Xiao Y, Ding Y, Lei J, et al. Bubble-induced in situ property modulation of liquid metal. Adv Mater Interfaces, 2021, 8: 2002204

    Article  Google Scholar 

  84. Li F, Shu J, Zhang L, et al. Liquid metal droplet robot. Appl Mater Today, 2020, 19: 100597

    Article  Google Scholar 

  85. Kong W, Wang Z, Wang M, et al. Oxide-mediated formation of chemically stable tungsten-liquid metal mixtures for enhanced thermal interfaces. Adv Mater, 2019, 31: 1904309

    Article  Google Scholar 

  86. Carle F, Bai K, Casara J, et al. Development of magnetic liquid metal suspensions for magnetohydrodynamics. Phys Rev Fluids, 2017, 2: 013301

    Article  Google Scholar 

  87. Li X, Li M, Shou Q, et al. Liquid metal initiator of ring-opening polymerization: self-capsulation into thermal/photomoldable powder for multifunctional composites. Adv Mater, 2020, 32: 2003553

    Article  Google Scholar 

  88. Ren L, Zhuang J, Casillas G, et al. Nanodroplets for stretchable superconducting circuits. Adv Funct Mater, 2016, 26: 8111–8118

    Article  Google Scholar 

  89. Zhang J, Yao Y, Sheng L, et al. Self-fueled biomimetic liquid metal Mollusk. Adv Mater, 2015, 27: 2648–2655

    Article  Google Scholar 

  90. Taccardi N, Grabau M, Debuschewitz J, et al. Gallium-rich Pd-Ga phases as supported liquid metal catalysts. Nat Chem, 2017, 9: 862–867

    Article  Google Scholar 

  91. Torelli D A, Francis S A, Crompton J C, et al. Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal, 2016, 6: 2100–2104

    Article  Google Scholar 

  92. Zhang W, Ou J Z, Tang S Y, et al. Liquid metal/metal oxide frameworks. Adv Funct Mater, 2014, 24: 3799–3807

    Article  Google Scholar 

  93. Pan Z W, Dai Z R, Ma C, et al. Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J Am Chem Soc, 2002, 124: 1817–1822

    Article  Google Scholar 

  94. Ding G, Zhu Y, Wang S, et al. Chemical vapor deposition of graphene on liquid metal catalysts. Carbon, 2013, 53: 321–326

    Article  Google Scholar 

  95. Chen S, Yang X, Cui Y, et al. Self-growing and serpentine locomotion of liquid metal induced by copper ions. ACS Appl Mater Interfaces, 2018, 10: 22889–22895

    Article  Google Scholar 

  96. Liang S T, Wang H Z, Liu J. Progress, mechanisms and applications of liquid-metal catalyst systems. Chem Eur J, 2018, 24: 17616–17626

    Article  Google Scholar 

  97. Khan H, Mahmood N, Zavabeti A, et al. Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators. Nat Commun, 2020, 11: 3449

    Article  Google Scholar 

  98. Ren L, Xu X, Du Y, et al. Liquid metals and their hybrids as stimulus-responsive smart materials. Mater Today, 2020, 34: 92–114

    Article  Google Scholar 

  99. Liu H, Xia J, Zhang N, et al. Solid-liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nat Catal, 2021, 4: 202–211

    Article  Google Scholar 

  100. Handschuh-Wang S, Stadler F J, Zhou X. Critical review on the physical properties of gallium-based liquid metals and selected pathways for their alteration. J Phys Chem C, 2021, 125: 20113–20142

    Article  Google Scholar 

  101. Ye Z, Lum G Z, Song S, et al. Phase change of gallium enables highly reversible and switchable adhesion. Adv Mater, 2016, 28: 5088–5092

    Article  Google Scholar 

  102. Yuan B, Zhao C, Sun X, et al. Liquid-metal-enhanced wire mesh as a stiffness variable material for making soft robotics. Adv Eng Mater, 2019, 21: 1900530

    Article  Google Scholar 

  103. Byun S H, Sim J Y, Zhou Z, et al. Mechanically transformative electronics, sensors, and implantable devices. Sci Adv, 2019, 5: eaay0418

    Article  Google Scholar 

  104. Wen X, Wang B, Huang S, et al. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosens Bioelectron, 2019, 131: 37–45

    Article  Google Scholar 

  105. Chang B S, Tutika R, Cutinho J, et al. Mechanically triggered composite stiffness tuning through thermodynamic relaxation (ST3R). Mater Horiz, 2018, 5: 416–422

    Article  Google Scholar 

  106. Rich S, Jang S H, Park Y L, et al. Liquid metal-conductive thermoplastic elastomer integration for low-voltage stiffness tuning. Adv Mater Technol, 2017, 2: 1700179

    Article  Google Scholar 

  107. Wang L, Yang Y, Chen Y, et al. Controllable and reversible tuning of material rigidity for robot applications. Mater Today, 2018, 21: 563–576

    Article  Google Scholar 

  108. Bhuyan P, Wei Y, Sin D, et al. Soft and stretchable liquid metal composites with shape memory and healable conductivity. ACS Appl Mater Interfaces, 2021, 13: 28916–28924

    Article  Google Scholar 

  109. Park S, Thangavel G, Parida K, et al. A stretchable and self-healing energy storage device based on mechanically and electrically restorative liquid-metal particles and carboxylated polyurethane composites. Adv Mater, 2019, 31: 1805536

    Article  Google Scholar 

  110. Wu Y, Fang Z, Wu W, et al. Tuning flexibility-rigidity conversion of liquid metal/polyurethane composites by phase transition for potential shape memory application. Adv Eng Mater, 2021, 23: 2100372

    Article  Google Scholar 

  111. Liu J, Yi L. Liquid Metal Biomaterials. Berlin: Springer, 2018

    Book  Google Scholar 

  112. Sun X, Yuan B, Sheng L, et al. Liquid metal enabled injectable biomedical technologies and applications. Appl Mater Today, 2020, 20: 100722

    Article  Google Scholar 

  113. Lu Y, Lin Y, Chen Z, et al. Enhanced endosomal escape by light-fueled liquid-metal transformer. Nano Lett, 2017, 17: 2138–2145

    Article  Google Scholar 

  114. Duan M, Ren Y, Sun X, et al. EGaIn fiber enabled highly flexible supercapacitors. ACS Omega, 2021, 6: 24444–24449

    Article  Google Scholar 

  115. Zhang W, Naidu B S, Ou J Z, et al. Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis. ACS Appl Mater Interfaces, 2015, 7: 1943–1948

    Article  Google Scholar 

  116. Ladd C, So J H, Muth J, et al. 3D printing of free standing liquid metal microstructures. Adv Mater, 2013, 25: 5081–5085

    Article  Google Scholar 

  117. Boley J W, White E L, Kramer R K. Mechanically sintered gallium-indium nanoparticles. Adv Mater, 2015, 27: 2355–2360

    Article  Google Scholar 

  118. Guo R, Yao S, Sun X, et al. Semi-liquid metal and adhesion-selection enabled rolling and transfer (SMART) printing: A general method towards fast fabrication of flexible electronics. Sci China Mater, 2019, 62: 982–994

    Article  Google Scholar 

  119. Cui Y, Ding Y, Xu S, et al. Liquid metal corrosion effects on conventional metallic alloys exposed to eutectic gallium-indium alloy under various temperature states. Int J Thermophys, 2018, 39: 113

    Article  Google Scholar 

  120. Gao Y, Liu J. Gallium-based thermal interface material with high compliance and wettability. Appl Phys A, 2012, 107: 701–708

    Article  Google Scholar 

  121. Guo R, Zhen Y, Huang X, et al. Spatially selective adhesion enabled transfer printing of liquid metal for 3D electronic circuits. Appl Mater Today, 2021, 25: 101236

    Article  Google Scholar 

  122. Jia L C, Jia X X, Sun W J, et al. Stretchable liquid metal-based conductive textile for electromagnetic interference shielding. ACS Appl Mater Interfaces, 2020, 12: 53230–53238

    Article  Google Scholar 

  123. Wang M, Ma C, Uzabakiriho P C, et al. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS Nano, 2021, 15: 19364–19376

    Article  Google Scholar 

  124. Wang L, Liu J. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen. Proc R Soc A, 2014, 470: 20140609

    Article  Google Scholar 

  125. Buchanan C, Gardner L. Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Eng Struct, 2019, 180: 332–348

    Article  Google Scholar 

  126. Wu P, Fu J, Xu Y, et al. Liquid metal microgels for three-dimensional printing of smart electronic clothes. ACS Appl Mater Interfaces, 2022, 14: 13458–13467

    Article  Google Scholar 

  127. Park Y G, An H S, Kim J Y, et al. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci Adv, 2019, 5: eaay2844

    Article  Google Scholar 

  128. Zhang Q, Zheng Y, Liu J. Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences. Front Energy, 2012, 6: 311–340

    Article  Google Scholar 

  129. Haake A, Tutika R, Schloer G M, et al. On-demand programming of liquid metal-composite microstructures through direct ink write 3D printing. Adv Mater, 2022, 34: 2200182

    Article  Google Scholar 

  130. Votzke C, Daalkhaijav U, Menguc Y, et al. 3D-printed liquid metal interconnects for stretchable electronics. IEEE Sens J, 2019, 19: 3832–3840

    Article  Google Scholar 

  131. Yu Y, Liu F, Liu J. Direct 3D printing of low melting point alloy via adhesion mechanism. Rapid Prototyping J, 2017, 23: 642–650

    Article  Google Scholar 

  132. Wang L, Liu J. Advances in the development of liquid metal-based printed electronic inks. Front Mater, 2019, 6: 303

    Article  Google Scholar 

  133. Dickey M D, Chiechi R C, Larsen R J, et al. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater, 2008, 18: 1097–1104

    Article  Google Scholar 

  134. Hu Y, Zhuo H, Zhang Y, et al. Graphene oxide encapsulating liquid metal to toughen hydrogel. Adv Funct Mater, 2021, 31: 2106761

    Article  Google Scholar 

  135. Saborio M G, Cai S, Tang J, et al. Liquid metal droplet and graphene co-fillers for electrically conductive flexible composites. Small, 2020, 16: 1903753

    Article  Google Scholar 

  136. Zhang W, Wu B, Sun S, et al. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat Commun, 2021, 12: 4082

    Article  Google Scholar 

  137. Choi S, Park J, Hyun W, et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano, 2015, 9: 6626–6633

    Article  Google Scholar 

  138. Qiu Q, Zhu M, Li Z, et al. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy, 2019, 58: 750–758

    Article  Google Scholar 

  139. Wu C, Kim T W, Li F, et al. Wearable electricity generators fabricated utilizing transparent electronic textiles based on polyester/Ag nanowires/graphene core-shell nanocomposites. ACS Nano, 2016, 10: 6449–6457

    Article  Google Scholar 

  140. Deng F, Nguyen Q K, Zhang P. Multifunctional liquid metal lattice materials through hybrid design and manufacturing. Additive Manufacturing, 2020, 33: 101117

    Article  Google Scholar 

  141. Wang H, Chen S, Li H, et al. A liquid gripper based on phase transitional metallic ferrofluid. Adv Funct Mater, 2021, 31: 2100274

    Article  Google Scholar 

  142. Yu D, Liao Y, Song Y, et al. A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv Sci, 2020, 7: 2000177

    Article  Google Scholar 

  143. Wang H, Chen S, Zhu X, et al. Phase transition science and engineering of gallium-based liquid metal. Matter, 2022, 5: 2054–2085

    Article  Google Scholar 

  144. Peng Y, Liu H, Xin Y, et al. Rheological conductor from liquid metal-polymer composites. Matter, 2021, 4: 3001–3014

    Article  Google Scholar 

  145. Xin Y, Gao T, Xu J, et al. Transient electrically driven stiffness-changing materials from liquid metal polymer composites. ACS Appl Mater Interfaces, 2021, 13: 50392–50400

    Article  Google Scholar 

  146. Deng Y, Liu J. Flexible mechanical joint as human exoskeleton using low-melting-point alloy. J Med Devices, 2014, 8: 044506

    Article  Google Scholar 

  147. Liu H, Xin Y, Bisoyi H K, et al. Stimuli-driven insulator-conductor transition in a flexible polymer composite enabled by biphasic liquid metal. Adv Mater, 2021, 33: 2104634

    Article  Google Scholar 

  148. Wu Y, Zhen R, Liu H, et al. Liquid metal fiber composed of a tubular channel as a high-performance strain sensor. J Mater Chem C, 2017, 5: 12483–12491

    Article  Google Scholar 

  149. Yuan B, Zhao C, Sun X, et al. Lightweight liquid metal entity. Adv Funct Mater, 2020, 30: 1910709

    Article  Google Scholar 

  150. Wang L, Fu J, Zhao F, et al. Pressure sensing of liquid metal-based fiber arrays. AIP Adv, 2021, 11: 035322

    Article  Google Scholar 

  151. Dong C, Leber A, Das Gupta T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun, 2020, 11: 3537

    Article  Google Scholar 

  152. Kim T, Kim D, Lee B J, et al. Soft and deformable sensors based on liquid metals. Sensors, 2019, 19: 4250

    Article  Google Scholar 

  153. Kim K, Choi J, Jeong Y, et al. Highly sensitive and wearable liquid metal-based pressure sensor for health monitoring applications: Integration of a 3D-printed microbump array with the microchannel. Adv Healthcare Mater, 2019, 8: 1900978

    Article  Google Scholar 

  154. Furse C, Chung Y C, Lo C, et al. A critical comparison of reflectometry methods for location of wiring faults. Smart Struct Syst, 2006, 2: 25–46

    Article  Google Scholar 

  155. Zhou Z, Jiao T, Zhao P, et al. Development of a distributed crack sensor using coaxial cable. Sensors, 2016, 16: 1198

    Article  Google Scholar 

  156. Dominauskas A, Heider D, Gillespie J W. Electric time-domain reflectometry applied to measurement of rock mass deformation. Int J Rock Mech Min Sci Geomech Abstr, 1988, 25: 287–297

    Article  Google Scholar 

  157. Zadan M, Chiew C, Majidi C, et al. Liquid metal architectures for soft and wearable energy harvesting devices. Multifunct Mater, 2021, 4: 012001

    Article  Google Scholar 

  158. Yang Y, Han J, Huang J, et al. Stretchable energy-harvesting tactile interactive interface with liquid-metal-nanoparticle-based electrodes. Adv Funct Mater, 2020, 30: 1909652

    Article  Google Scholar 

  159. Wang K, Jiang K, Chung B, et al. Lithium-antimony-lead liquid metal battery for grid-level energy storage. Nature, 2014, 514: 348–350

    Article  Google Scholar 

  160. Kim H, Boysen D A, Newhouse J M, et al. Liquid metal batteries: Past, present, and future. Chem Rev, 2013, 113: 2075–2099

    Article  Google Scholar 

  161. Li H, Yin H, Wang K, et al. Liquid metal electrodes for energy storage batteries. Adv Energy Mater, 2016, 6: 1600483

    Article  Google Scholar 

  162. Guo X, Zhang L, Ding Y, et al. Room-temperature liquid metal and alloy systems for energy storage applications. Energy Environ Sci, 2019, 12: 2605–2619

    Article  Google Scholar 

  163. Liu G, Kim J Y, Wang M, et al. Soft, highly elastic, and discharge-current-controllable eutectic gallium-indium liquid metal-air battery operated at room temperature. Adv Energy Mater, 2018, 8: 1703652

    Article  Google Scholar 

  164. Guo X, Ding Y, Xue L, et al. A self-healing room-temperature liquid-metal anode for alkali-ion batteries. Adv Funct Mater, 2018, 28: 1804649

    Article  Google Scholar 

  165. Liu J, Yang, Y, Deng Z. A fabric composite composed of liquid metal. PRC Patent, CN201010219755.2, 2013-08-21

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongGang Lv.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12072054 and 22201223), and Natural Science Foundation of Hubei, China (Grant No. 2022CFA023).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bie, B., Xu, W. & Lv, Y. Liquid metal-based textiles for smart clothes. Sci. China Technol. Sci. 66, 1511–1529 (2023). https://doi.org/10.1007/s11431-022-2266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2266-3

Keywords

Navigation