Skip to main content
Log in

Advances in 4D printed shape memory composites and structures: Actuation and application

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Shape memory polymer composites (SMPCs) are a type of smart material that can change shapes under the stimulation of the external environment, and they have great potential in aerospace, biomedical, robotics, and electronic devices due to their advantages of high strength and toughness, lightweight, impact resistance, corrosion resistance, and aging resistance. 4D printing technology has provided new opportunities for the further development of smart materials. The addition of various fillers enriches the variety of printable materials and provides composites with different properties and functions. The combination of SMPCs and printing technologies realizes the structure-function integration. This paper introduces the emergence and development of 4D printing technologies, the preparation methods and properties of SMPCs for 4D printing; as well as the research progress and potential application of 4D printable SMPCs in recent years in terms of thermal, electrical, magnetic, and optical driving. Finally, the existing problems and future development of 4D printable SMPCs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leng J, Lan X, Liu Y, et al. Shape-memory polymers and their composites: Stimulus methods and applications. Prog Mater Sci, 2011, 56: 1077–1135

    Article  Google Scholar 

  2. Deng Y, Lan X, Leng J. Unidirectional carbon fiber reinforced cyanate-based shape polymer composite with variable stiffness. Adv Eng Mater, 2022, 24: 2200580

    Article  Google Scholar 

  3. Fang Z, Shi Y, Zhang Y, et al. Reconfigurable polymer networks for digital light processing 3D printing. ACS Appl Mater Interfaces, 2021, 13: 15584–15590

    Article  Google Scholar 

  4. Shi Y, Fang G, Cao Z, et al. Digital light fabrication of reversible shape memory polymers. Chem Eng J, 2021, 426: 131306

    Article  Google Scholar 

  5. Wang L, Zhang F, Liu Y, et al. Thermal, mechanical and shape fixity behaviors of shape memory cyanate under γ-ray radiation. Smart Mater Struct, 2022, 31: 045010

    Article  Google Scholar 

  6. Luo L, Zhang F, Leng J. Multi-performance shape memory epoxy resins and their composites with narrow transition temperature range. Compos Sci Tech, 2021, 213: 108899

    Article  Google Scholar 

  7. Yuan C, Wang F, Qi B, et al. 3D printing of multi-material composites with tunable shape memory behavior. Mater Des, 2020, 193: 108785

    Article  Google Scholar 

  8. Zheng N, Xu Y, Zhao Q, et al. Dynamic covalent polymer networks: A molecular platform for designing functions beyond chemical recycling and self-healing. Chem Rev, 2021, 121: 1716–1745

    Article  Google Scholar 

  9. Kuang X, Roach D J, Wu J, et al. Advances in 4D printing: Materials and applications. Adv Funct Mater, 2019, 29: 1805290

    Article  Google Scholar 

  10. Yang Y, Chen Y, Wei Y, et al. 3D printing of shape memory polymer for functional part fabrication. Int J Adv Manuf Technol, 2016, 84: 2079–2095

    Article  Google Scholar 

  11. Deng Y, Zhang F, Liu Y, et al. Design and synthesis of shape memory phenol-formaldehyde with good irradiation resistance, thermal, and mechanical properties. ACS Appl Polym Mater, 2022, 4: 5789–5799

    Article  Google Scholar 

  12. Hull C W. Apparatus for production of three-dimensional objects by stereolithography. US Patent, US4575330A, 1986-03-11

  13. Ge Q, Qi H J, Dunn M L. Active materials by four-dimension printing. Appl Phys Lett, 2013, 103: 131901

    Article  Google Scholar 

  14. Wang Q, Tian X, Huang L, et al. Programmable morphing composites with embedded continuous fibers by 4D printing. Mater Des, 2018, 155: 404–413

    Article  Google Scholar 

  15. Zeng C, Liu L, Bian W, et al. Temperature-dependent mechanical response of 4D printed composite lattice structures reinforced by continuous fiber. Composite Struct, 2022, 280: 114952

    Article  Google Scholar 

  16. Hao W, Liu Y, Zhou H, et al. Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polym Testing, 2018, 65: 29–34

    Article  Google Scholar 

  17. Momeni F, M. Mehdi Hassani. N S, Liu X, et al. A review of 4D printing. Mater Des, 2017, 122: 42–79

    Article  Google Scholar 

  18. Zhang Q, Zhang K, Hu G. Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci Rep, 2016, 6: 22431

    Article  Google Scholar 

  19. Wang J, Wang Z, Song Z, et al. Biomimetic shape-color double-responsive 4D printing. Adv Mater Technol, 2019, 4: 1900293

    Article  Google Scholar 

  20. Invernizzi M, Turri S, Levi M, et al. 4D printed thermally activated self-healing and shape memory polycaprolactone-based polymers. Eur Polym J, 2018, 101: 169–176

    Article  Google Scholar 

  21. Zhang B, Zhang W, Zhang Z, et al. Self-healing four-dimensional printing with an ultraviolet curable double-network shape memory polymer system. ACS Appl Mater Interfaces, 2019, 11: 10328–10336

    Article  Google Scholar 

  22. Zhang B, Kowsari K, Serjouei A, et al. Reprocessable thermosets for sustainable three-dimensional printing. Nat Commun, 2018, 9: 1831

    Article  Google Scholar 

  23. Sydney G A, Matsumoto E A, Nuzzo R G, et al. Biomimetic 4D printing. Nat Mater, 2016, 15: 413–418

    Article  Google Scholar 

  24. Ding Z, Weeger O, Qi H J, et al. 4D rods: 3D structures via programmable 1D composite rods. Mater Des, 2018, 137: 256–265

    Article  Google Scholar 

  25. Manen T V, Janbaz S, Zadpoor A A. Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater Horiz, 2017, 4: 1064–1069

    Article  Google Scholar 

  26. Wu Z L, Moshe M, Greener J, et al. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat Commun, 2013, 4: 1586

    Article  Google Scholar 

  27. Carrell J, Gruss G, Gomez E. Four-dimensional printing using fused-deposition modeling: A review. Rapid Prototyp J, 2020, 26: 855–869

    Article  Google Scholar 

  28. Kristiawan R B, Imaduddin F, Ariawan D, et al. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Eng, 2021, 11: 639–649

    Article  Google Scholar 

  29. Kelly B E, Bhattacharya I, Heidari H, et al. Volumetric additive manufacturing via tomographic reconstruction. Science, 2019, 363: 1075–1079

    Article  Google Scholar 

  30. Ren L, Li B, Song Z, et al. Bioinspired fiber-regulated composite with tunable permanent shape and shape memory properties via 3d magnetic printing. Compos Part B-Eng, 2019, 164: 458–466

    Article  Google Scholar 

  31. Cesarano III J, Segalman R, Calvert P. Robocasting provides mold-less fabrication from slurry deposition. Ceram Ind, 1998, 148: 94–102

    Google Scholar 

  32. Chen K, Kuang X, Li V, et al. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing. Soft Matter, 2018, 14: 1879–1886

    Article  Google Scholar 

  33. Skylar-Scott M A, Mueller J, Visser C W, et al. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature, 2019, 575: 330–335

    Article  Google Scholar 

  34. Luo L, Zhang F, Pan W, et al. Shape memory polymer foam: Active deformation, simulation and validation of space environment. Smart Mater Struct, 2022, 31: 035008

    Article  Google Scholar 

  35. Li B, Zhu G, Hao Y, et al. Shape reconfiguration and functional self-healing of thermadapt shape memory epoxy vitrimers by exchange reaction of disulfide bonds. Smart Mater Struct, 2022, 31: 095047

    Article  Google Scholar 

  36. Xu W, Pan Y, Yin L, et al. Reprocessable shape memory epoxy resin based on substituent biphenyl structure. Macromol Chem Phys, 2021, 222: 2000401

    Article  Google Scholar 

  37. Lu Y, Xu H, Liang N, et al. High mechanical strength of shape-memory hyperbranched epoxy resins. ACS Appl Polym Mater, 2022, 4: 5574–5582

    Article  Google Scholar 

  38. Fan M, Liu J, Li X, et al. Thermal, mechanical and shape memory properties of an intrinsically toughened epoxy/anhydride system. J Polym Res, 2014, 21: 376

    Article  Google Scholar 

  39. Wu X, Yang X, Zhang Y, et al. A new shape memory epoxy resin with excellent comprehensive properties. J Mater Sci, 2016, 51: 3231–3240

    Article  Google Scholar 

  40. Fan M, Li X, Zhang J, et al. Curing kinetics and shape-memory behavior of an intrinsically toughened epoxy resin system. J Therm Anal Calorim, 2015, 119: 537–546

    Article  Google Scholar 

  41. Fan M, Yu H, Li X, et al. Thermomechanical and shape-memory properties of epoxy-based shape-memory polymer using diglycidyl ether of ethoxylated bisphenol-A. Smart Mater Struct, 2013, 22: 055034

    Article  Google Scholar 

  42. Feldkamp D M, Rousseau I A. Effect of chemical composition on the deformability of shape-memory epoxies. Macromol Mater Eng, 2011, 296: 1128–1141

    Article  Google Scholar 

  43. Biju R, Gouri C, Reghunadhan Nair C P. Shape memory polymers based on cyanate ester-epoxy-poly(tetramethyleneoxide) co-reacted system. Eur Polym J, 2012, 48: 499–511

    Article  Google Scholar 

  44. Wei K, Zhu G, Tang Y, et al. The effects of crosslink density on thermo-mechanical properties of shape-memory hydro-epoxy resin. J Mater Res, 2013, 28: 2903–2910

    Article  Google Scholar 

  45. Yu R, Yang X, Zhang Y, et al. Three-dimensional printing of shape memory composites with epoxy-acrylate hybrid photopolymer. ACS Appl Mater Interfaces, 2017, 9: 1820–1829

    Article  Google Scholar 

  46. Song Z, Ren L, Zhao C, et al. Biomimetic nonuniform, dual-stimuli self-morphing enabled by gradient four-dimensional printing. ACS Appl Mater Interfaces, 2020, 12: 6351–6361

    Article  Google Scholar 

  47. Baker A B, Bates S R G, Llewellyn-Jones T M, et al. 4D printing with robust thermoplastic polyurethane hydrogel-elastomer trilayers. Mater Des, 2019, 163: 107544

    Article  Google Scholar 

  48. Yuan C, Ding Z, Wang T J, et al. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates. Smart Mater Struct, 2017, 26: 105027

    Article  Google Scholar 

  49. Zhao Z, Kuang X, Yuan C, et al. Hydrophilic/hydrophobic composite shape-shifting structures. ACS Appl Mater Interfaces, 2018, 10: 19932–19939

    Article  Google Scholar 

  50. Naficy S, Gately R, Gorkin III R, et al. 4D Printing of reversible shape morphing hydrogel structures. Macromol Mater Eng, 2017, 302: 1600212

    Article  Google Scholar 

  51. Jin Y, Shen Y, Yin J, et al. Nanoclay-based self-supporting responsive nanocomposite hydrogels for printing applications. ACS Appl Mater Interfaces, 2018, 10: 10461–10470

    Article  Google Scholar 

  52. Wang L, Zhang F, Liu Y, et al. Photosensitive composite inks for digital light processing four-dimensional printing of shape memory capture devices. ACS Appl Mater Interfaces, 2021, 13: 18110–18119

    Article  Google Scholar 

  53. Mulakkal M C, Trask R S, Ting V P, et al. Responsive cellulose-hydrogel composite ink for 4D printing. Mater Des, 2018, 160: 108–118

    Article  Google Scholar 

  54. Choong Y Y C, Maleksaeedi S, Eng H, et al. High speed 4D printing of shape memory polymers with nanosilica. Appl Mater Today, 2020, 18: 100515

    Article  Google Scholar 

  55. Kuang X, Chen K, Dunn C K, et al. 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing. ACS Appl Mater Interfaces, 2018, 10: 7381–7388

    Article  Google Scholar 

  56. Ren L, Li B, Song Z, et al. 3D printing of structural gradient soft actuators by variation of bioinspired architectures. J Mater Sci, 2019, 54: 6542–6551

    Article  Google Scholar 

  57. Zou Y, Huang Z, Li X, et al. 4D printing pre-strained structures for fast thermal actuation. Front Mater, 2021, 8: 661999

    Article  Google Scholar 

  58. Arun D I, Santhosh Kumar K S, Satheesh Kumar B, et al. High glasstransition polyurethane-carbon black electro-active shape memory nanocomposite for aerospace systems. Mater Sci Tech, 2019, 35: 596–605

    Article  Google Scholar 

  59. Garcia Rosales C A, Garcia Duarte M F, Kim H, et al. 3D printing of shape memory polymer (SMP)/carbon black (CB) nanocomposites with electro-responsive toughness enhancement. Mater Res Express, 2018, 5: 065704

    Article  Google Scholar 

  60. Datta S, Henry T C, Sliozberg Y R, et al. Carbon nanotube enhanced shape memory epoxy for improved mechanical properties and electroactive shape recovery. Polymer, 2021, 212: 123158

    Article  Google Scholar 

  61. Tekay E. Preparation and characterization of electro-active shape memory PCL/SEBS-g-MA/MWCNT nanocomposites. Polymer, 2020, 209: 122989

    Article  Google Scholar 

  62. Cortés A, Pérez-Chao N, Jiménez-Suárez A, et al. Sequential and selective shape memory by remote electrical control. Eur Polym J, 2022, 164: 110888

    Article  Google Scholar 

  63. Rodriguez J N, Zhu C, Duoss E B, et al. Shape-morphing composites with designed micro-architectures. Sci Rep, 2016, 6: 27933

    Article  Google Scholar 

  64. Duigou A L, Chabaud G, Scarpa F, et al. Bioinspired electro-thermo-hygro reversible shape-changing materials by 4D printing. Adv Funct Mater, 2019, 29: 1903280

    Article  Google Scholar 

  65. Tekay E, Şen S. Thermo-responsive and electro-active shape memory poly(styrene-b-isoprene-b-styrene)/poly(ethylene-co-1-octene)/graphene composites: Effect of size of graphene nanoplatelets. FlatChem, 2022, 31: 100319

    Article  Google Scholar 

  66. Wan X, Zhang F, Liu Y, et al. CNT-based electro-responsive shape memory functionalized 3D printed nanocomposites for liquid sensors. Carbon, 2019, 155: 77–87

    Article  Google Scholar 

  67. Liu Y, Zhang F, Leng J, et al. Remotely and sequentially controlled actuation of electroactivated carbon nanotube/shape memory polymer composites. Adv Mater Technol, 2019, 4: 1900600

    Article  Google Scholar 

  68. Dong X, Zhang F, Wang L, et al. 4D printing of electroactive shape-changing composite structures and their programmable behaviors. Compos Part A-Appl Sci Manufacturing, 2022, 157: 106925

    Article  Google Scholar 

  69. Wei H, Cauchy X, Navas I O, et al. Direct 3D printing of hybrid nanofiber-based nanocomposites for highly conductive and shape memory applications. ACS Appl Mater Interfaces, 2019, 11: 24523–24532

    Article  Google Scholar 

  70. Li Z, Yang F, Yin Y. Smart materials by nanoscale magnetic assembly. Adv Funct Mater, 2020, 30: 1903467

    Article  Google Scholar 

  71. Zhao W, Zhang F, Leng J, et al. Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites. Compos Sci Tech, 2019, 184: 107866

    Article  Google Scholar 

  72. Ze Q, Kuang X, Wu S, et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv Mater, 2020, 32: 1906657

    Article  Google Scholar 

  73. Zhao Y, Hua M, Yan Y, et al. Stimuli-responsive polymers for soft robotics. Annu Rev Control Robot Auton Syst, 2022, 5: 515–545

    Article  Google Scholar 

  74. Shinoda H, Azukizawa S, Maeda K, et al. Bio-mimic motion of 3D-printed gel structures dispersed with magnetic particles. J Electrochem Soc, 2019, 166: B3235–B3239

    Article  Google Scholar 

  75. Roh S, Okello L B, Golbasi N, et al. 3D-printed silicone soft architectures with programmed magneto-capillary reconfiguration. Adv Mater Technol, 2019, 4: 1800528

    Article  Google Scholar 

  76. Zhu P, Yang W, Wang R, et al. 4D printing of complex structures with a fast response time to magnetic stimulus. ACS Appl Mater Interfaces, 2018, 10: 36435–36442

    Article  Google Scholar 

  77. Zhang Y, Wang Q, Yi S, et al. 4D printing of magnetoactive soft materials for on-demand magnetic actuation transformation. ACS Appl Mater Interfaces, 2021, 13: 4174–4184

    Article  Google Scholar 

  78. Wu H, Wang O, Tian Y, et al. Selective laser sintering-based 4D printing of magnetism-responsive grippers. ACS Appl Mater Interfaces, 2021, 13: 12679–12688

    Article  Google Scholar 

  79. Bhatti M R A, Kernin A, Tausif M, et al. Light-driven actuation in synthetic polymers: A review from fundamental concepts to applications. Adv Opt Mater, 2022, 10: 2102186

    Article  Google Scholar 

  80. Deng Y, Zhang F, Jiang M, et al. Programmable 4D printing of photoactive shape memory composite structures. ACS Appl Mater Interfaces, 2022, 14: 42568–42577

    Article  Google Scholar 

  81. Jin X, Liu X, Li X, et al. High lignin, light-driven shape memory polymers with excellent mechanical performance. Int J Biol Macromolecules, 2022, 219: 44–52

    Article  Google Scholar 

  82. Wang Y, Wang Y, Wei Q, et al. Light-responsive shape memory polymer composites. Eur Polym J, 2022, 173: 111314

    Article  Google Scholar 

  83. Zhang Y, Yin X Y, Zheng M, et al. 3D printing of thermoreversible polyurethanes with targeted shape memory and precise in situ self-healing properties. J Mater Chem A, 2019, 7: 6972–6984

    Article  Google Scholar 

  84. Chen G, Jin B, Zhao Q, et al. A photo-driven metallo-supramolecular stress-free reversible shape memory polymer. J Mater Chem A, 2021, 9: 6827–6830

    Article  Google Scholar 

  85. Hagaman D E, Leist S, Zhou J, et al. Photoactivated polymeric bilayer actuators fabricated via 3D printing. ACS Appl Mater Interfaces, 2018, 10: 27308–27315

    Article  Google Scholar 

  86. Li C Y, Zhang F H, Wang Y L, et al. Development of 4D printed shape memory polymers in biomedical field (in Chinese). Sci Sin-Tech, 2019, 49: 13–25

    Article  Google Scholar 

  87. Jia H, Gu S Y, Chang K. 3D printed self-expandable vascular stents from biodegradable shape memory polymer. Adv Polym Technol, 2018, 37: 3222–3228

    Article  Google Scholar 

  88. Miao S, Castro N, Nowicki M, et al. 4D printing of polymeric materials for tissue and organ regeneration. Mater Today, 2017, 20: 577–591

    Article  Google Scholar 

  89. Wei H, Zhang Q, Yao Y, et al. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl Mater Interfaces, 2017, 9: 876–883

    Article  Google Scholar 

  90. Chang F Y, Liang T H, Wu T J, et al. Using 3D printing and femtosecond laser micromachining to fabricate biodegradable peripheral vascular stents with high structural uniformity and dimensional precision. Int J Adv Manuf Technol, 2021, 116: 1523–1536

    Article  Google Scholar 

  91. Morrison R J, Hollister S J, Niedner M F, et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med, 2015, 7: 285ra64

    Article  Google Scholar 

  92. Zarek M, Mansour N, Shapira S, et al. 4D printing of shape memory-based personalized endoluminal medical Devices. Macromol Rapid Commun, 2017, 38: 1600628

    Article  Google Scholar 

  93. Zhang F, Wen N, Wang L, et al. Design of 4D printed shape-changing tracheal stent and remote controlling actuation. Int J Smart Nano Mater, 2021, 12: 375–389

    Article  Google Scholar 

  94. Lin C, Lv J, Li Y, et al. 4D-printed biodegradable and remotely controllable shape memory occlusion devices. Adv Funct Mater, 2019, 29: 1906569

    Article  Google Scholar 

  95. Lin C, Liu L, Liu Y, et al. 4D printing of bioinspired absorbable left atrial appendage occluders: A proof-of-concept study. ACS Appl Mater Interfaces, 2021, 13: 12668–12678

    Article  Google Scholar 

  96. Zhao W, Huang Z, Liu L, et al. Porous bone tissue scaffold concept based on shape memory PLA/Fe3O4. Compos Sci Tech, 2021, 203: 108563

    Article  Google Scholar 

  97. Zhang F, Wang L, Zheng Z, et al. Magnetic programming of 4D printed shape memory composite structures. Compos Part A-Appl Sci Manuf, 2019, 125: 105571

    Article  Google Scholar 

  98. Zhang Y, Li C, Zhang W, et al. 3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration. Bioactive Mater, 2022, 16: 218–231

    Article  Google Scholar 

  99. You D, Chen G, Liu C, et al. 4D printing of multi-responsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate. Adv Funct Mater, 2021, 31: 2103920

    Article  Google Scholar 

  100. Dado D, Sagi M, Levenberg S, et al. Mechanical control of stem cell differentiation. Regenerative Med, 2012, 7: 101–116

    Article  Google Scholar 

  101. Guilak F, Cohen D M, Estes B T, et al. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 2009, 5: 17–26

    Article  Google Scholar 

  102. Hendrikson W J, Rouwkema J, Clementi F, et al. Towards 4D printed scaffolds for tissue engineering: Exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication, 2017, 9: 031001

    Article  Google Scholar 

  103. Miao S, Zhu W, Castro N J, et al. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep, 2016, 6: 27226

    Article  Google Scholar 

  104. Kanu N J, Gupta E, Vates U K, et al. An insight into biomimetic 4D printing. RSC Adv, 2019, 9: 38209–38226

    Article  Google Scholar 

  105. Yan D, Chang J, Zhang H, et al. Soft three-dimensional network materials with rational bio-mimetic designs. Nat Commun, 2020, 11: 1180

    Article  Google Scholar 

  106. Erb R M, Sander J S, Grisch R, et al. Self-shaping composites with programmable bioinspired microstructures. Nat Commun, 2013, 4: 1712

    Article  Google Scholar 

  107. Peng B, Yang Y, Gu K, et al. Digital light processing 3D printing of triple shape memory polymer for sequential shape shifting. ACS Mater Lett, 2019, 1: 410–417

    Article  Google Scholar 

  108. Zarek M, Layani M, Cooperstein I, et al. 3D printing of shape memory polymers for flexible electronic devices. Adv Mater, 2016, 28: 4449–4454

    Article  Google Scholar 

  109. Liu S, Li L. Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl Mater Interfaces, 2017, 9: 26429–26437

    Article  Google Scholar 

  110. Wang W, Li C, Cho M, et al. Soft tendril-inspired grippers: Shape morphing of programmable polymer-paper bilayer composites. ACS Appl Mater Interfaces, 2018, 10: 10419–10427

    Article  Google Scholar 

  111. Liu J, Erol O, Pantula A, et al. Dual-gel 4D printing of bioinspired tubes. ACS Appl Mater Interfaces, 2019, 11: 8492–8498

    Article  Google Scholar 

  112. Zhu H, He Y, Wang Y, et al. Mechanically-guided 4D printing of magnetoresponsive soft materials across different length scale. Adv Intelligent Syst, 2022, 4: 2100137

    Article  Google Scholar 

  113. Wang Z, Wu Y, Wu D, et al. Soft magnetic composites for highly deformable actuators by four-dimensional electrohydrodynamic printing. Compos Part B-Eng, 2022, 231: 109596

    Article  Google Scholar 

  114. Li W, Sang M, Liu S, et al. Dual-mode biomimetic soft actuator with electrothermal and magneto-responsive performance. Compos Part B-Eng, 2022, 238: 109880

    Article  Google Scholar 

  115. Ge Q, Sakhaei A H, Lee H, et al. Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep, 2016, 6: 31110

    Article  Google Scholar 

  116. McCracken J M, Rauzan B M, Kjellman J C E, et al. Ionic hydrogels with biomimetic 4D-printed mechanical gradients: Models for soft-bodied aquatic organisms. Adv Funct Mater, 2019, 29: 1806723

    Article  Google Scholar 

  117. Tang Y, Dai B, Su B, et al. Recent advances of 4D printing technologies toward soft tactile sensors. Front Mater, 2021, 8: 658046

    Article  Google Scholar 

  118. Zolfagharian A, Kaynak A, Bodaghi M, et al. Control-based 4D printing: Adaptive 4D-printed systems. Appl Sci, 2020, 10: 3020

    Article  Google Scholar 

  119. Fu K, Wang Y, Yan C, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater, 2016, 28: 2587–2594

    Article  Google Scholar 

  120. Zhu C, Liu T, Qian F, et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett, 2016, 16: 3448–3456

    Article  Google Scholar 

  121. Foster C W, Down M P, Zhang Y, et al. 3D printed graphene based energy storage devices. Sci Rep, 2017, 7: 42233

    Article  Google Scholar 

  122. Mu Q, Dunn C K, Wang L, et al. Thermal cure effects on electro-mechanical properties of conductive wires by direct ink write for 4D printing and soft machines. Smart Mater Struct, 2017, 26: 045008

    Article  Google Scholar 

  123. Yang H, Leow W R, Wang T, et al. 3D printed photoresponsive devices based on shape memory composites. Adv Mater, 2017, 29: 1701627

    Article  Google Scholar 

  124. Zhou Y, Parker C B, Joshi P, et al. 4D printing of stretchable supercapacitors via hybrid composite materials. Adv Mater Technol, 2021, 6: 2001055

    Article  Google Scholar 

  125. Chan B Q Y, Chong Y T, Wang S, et al. Synergistic combination of 4D printing and electroless metallic plating for the fabrication of a highly conductive electrical device. Chem Eng J, 2022, 430: 132513

    Article  Google Scholar 

  126. Huang L, Jiang R, Wu J, et al. Ultrafast digital printing toward 4D shape changing materials. Adv Mater, 2017, 29: 1605390

    Article  Google Scholar 

  127. Sakovsky M, Pellegrino S. Closed cross-section dual-matrix composite hinge for deployable structures. Composite Struct, 2019, 208: 784–795

    Article  Google Scholar 

  128. Li F, Liu L, Lan X, et al. Ground and geostationary orbital qualification of a sunlight-stimulated substrate based on shape memory polymer composite. Smart Mater Struct, 2019, 28: 075023

    Article  Google Scholar 

  129. Liu Z Q, Qiu H, Li X, et al. Review of large spacecraft deployable membrane antenna structures. Chin J Mech Eng, 2017, 30: 1447–1459

    Article  Google Scholar 

  130. Zhang D, Liu L, Leng J, et al. Ultra-light release device integrated with screen-printed heaters for CubeSat’s deployable solar arrays. Composite Struct, 2020, 232: 111561

    Article  Google Scholar 

  131. Liu L, Zhao W, Lan X, et al. Soft intelligent material and its applications in aerospace. J Harbin Inst Tech, 2016, 48: 1–17

    MathSciNet  Google Scholar 

  132. Liu T, Liu L, Yu M, et al. Integrative hinge based on shape memory polymer composites: Material, design, properties and application. Composite Struct, 2018, 206: 164–176

    Article  Google Scholar 

  133. Chen T, Bilal O R, Lang R, et al. Autonomous deployment of a solar panel using elastic origami and distributed shape-memory-polymer actuators. Phys Rev Appl, 2019, 11: 064069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinSong Leng.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11632005), and the Heilongjiang Touyan Innovation Team Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, F., Du, S. et al. Advances in 4D printed shape memory composites and structures: Actuation and application. Sci. China Technol. Sci. 66, 1271–1288 (2023). https://doi.org/10.1007/s11431-022-2255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2255-0

Navigation