Skip to main content
Log in

Deep adaptive control with online identification for industrial robots

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Derivation of control equations from data is a critical problem in numerous scientific and engineering fields. The inverse dynamic control of robot manipulators in the field of industrial robot research is a key example. Traditionally, researchers needed to obtain the robot dynamic model through physical modeling methods before developing controllers. However, the robot dynamic model and suitable control methods are often elusive and difficult to tune, particularly when dealing with real dynamical systems. In this paper, we combine an enhanced online sparse Bayesian learning (OSBL) algorithm and a model reference adaptive control method to obtain a data-driven modeling and control strategy from data containing noise; this strategy can be applied to dynamical systems. In particular, we use a sparse Bayesian approach, relying only on some prior knowledge of its physics, to extract an accurate mechanistic model from the measured data. Unmodeled parameters are further identified from the modeling error through a deep neural network (DNN). By combining the identification model with a model reference adaptive control approach, a general deep adaptive control (DAC) method is obtained, which can tolerate unmodeled dynamics. The adaptive update law is derived from Lyapunov’s stability criterion, which guarantees the asymptotic stability of the system. Finally, the Enhanced OSBL identification method and DAC scheme are applied on a six-degree-of-freedom industrial robot, and the effectiveness of the proposed method is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang L H. From intelligence science to intelligent manufacturing. Engineering, 2019, 5: 615–618

    Article  Google Scholar 

  2. Day C P. Robotics in industry—Their role in intelligent manufacturing. Engineering, 2018, 4: 440–445

    Article  Google Scholar 

  3. Brunton S L, Kutz J N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge: Cambridge University Press, 2022

    Book  MATH  Google Scholar 

  4. Byun J, Lee Y, Yoon J, et al. Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Sci Robot, 2018, 3: eaas9020

    Article  Google Scholar 

  5. Li J, Gu J N, Huang Z D, et al. Application research of improved YOLO V3 algorithm in PCB electronic component detection. Appl Sci, 2019, 9: 3750

    Article  Google Scholar 

  6. Lange F, Bertleff W, Suppa M. Force and trajectory control of industrial robots in stiff contact. In: 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, 2013. 2927–2934

  7. Kumar S S, Kumar M P. Cycle time reduction of a truck body assembly in an automobile industry by lean principles. Procedia Mater Sci, 2014, 5: 1853–1862

    Article  Google Scholar 

  8. Fathi M, Alvarez M J, Hassani Mehraban F, et al. A multiobjective optimization algorithm to solve the part feeding problem in mixed-model assembly lines. Math Problems Eng, 2014, 2014: 654053

    Article  MATH  Google Scholar 

  9. Maropoulos P G, Muelaner J E, Summers M D, et al. A new paradigm in large-scale assembly-research priorities in measurement assisted assembly. Int J Adv Manuf Technol, 2014, 70: 621–633

    Article  Google Scholar 

  10. Denney E, Pai G Automating the assembly of aviation safety cases. IEEE Trans Rel, 2014, 63: 830–849

    Article  Google Scholar 

  11. Frigo M A, Silva E C C, Barbosa G F. Augmented reality in aerospace manufacturing: A review. J Ind Intell Inform, 2016, 4: 125–130

    Google Scholar 

  12. Teti R, Segreto T, Caggiano A, et al. Smart multi-sensor monitoring in drilling of CFRP/CFRP composite material stacks for aerospace assembly applications. Appl Sci, 2020, 10: 758

    Article  Google Scholar 

  13. Yuan Y, Tang X, Zhou W, et al. Data driven discovery of cyber physical systems. Nat Commun, 2019, 10: 4894

    Article  Google Scholar 

  14. Yuan Y, Ma G J, Cheng C, et al. A general end-to-end diagnosis framework for manufacturing systems. Natl Sci Rev, 2020, 7: 418–429

    Article  Google Scholar 

  15. Kamnik R, Matko D, Bajd T. Application of model reference adaptive control to industrial robot impedance control. J Intell Robotic Syst, 1998, 22: 153–163

    Article  MATH  Google Scholar 

  16. Wang H L. Adaptive control of robot manipulators with uncertain kinematics and dynamics. IEEE Trans Automat Contr, 2017, 62: 948–954

    Article  MathSciNet  MATH  Google Scholar 

  17. Malki H A, Misir D, Feigenspan D, et al. Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads. IEEE Trans Contr Syst Technol, 1997, 5: 371–378

    Article  Google Scholar 

  18. Morel G, Iagnemma K, Dubowsky S. The precise control of manipulators with high joint-friction using base force/torque sensing. Automatica, 2000, 36: 931–941

    Article  MathSciNet  MATH  Google Scholar 

  19. Gasparetto A, Boscariol P, Lanzutti A, et al. Trajectory planning in robotics. Math Comput Sci, 2012, 6: 269–279

    Article  MathSciNet  Google Scholar 

  20. Giordano A M, Garofalo G, De Stefano M, et al. Dynamics and control of a free-floating space robot in presence of nonzero linear and angular momenta. In: 2016 IEEE 55th Conference on Decision and Control (CDC). Las Vegas, 2016. 7527–7534

  21. Bhaskar A, Dantu S, Roy S, et al. Adaptive artificial time delay control for bipedal walking with robustification to state-dependent constraint forces. In: 2021 20th International Conference on Advanced Robotics (ICAR). Ljubljana, 2021. 410–415

  22. Roy S, Baldi S, Li P, et al. Artificial-delay adaptive control for under-actuated euler-lagrange robotics. IEEE ASME Trans Mechatron, 2021, 26: 3064–3075

    Article  Google Scholar 

  23. Siciliano B, Khatib O. Springer Handbook of Robotics. Berlin, Heidelberg: Springer, 2008

    Book  MATH  Google Scholar 

  24. Siciliano B, Sciavicco L, Villani L, et al. Robotics: Modelling, Planning and Control. Berlin, Heidelberg: Springer Publishing Company, Incorporated, 2008

    Google Scholar 

  25. Carron A, Arcari E, Wermelinger M, et al. Data-driven model predictive control for trajectory tracking with a robotic arm. IEEE Robot Autom Lett, 2019, 4: 3758–3765

    Article  Google Scholar 

  26. Gautier M, Janot A, Vandanjon P O. A new closed-loop output error method for parameter identification of robot dynamics. IEEE Trans Contr Syst Technol, 2012, 21: 428–444

    Article  Google Scholar 

  27. Shang W W, Cong S, Ge Y. Adaptive computed torque control for a parallel manipulator with redundant actuation. Robotica, 2012, 30: 457–466

    Article  Google Scholar 

  28. Dias S, Queiroz K, Araujo A, et al. Robust control of robotic manipulators based on left inverse system and variable structure model reference adaptive control. Int J Adapt Control Signal Process, 2016, 30: 1389–1407

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang J F, Liu J, Hu R, et al. Online four dimensional trajectory prediction method based on aircraft intent updating. Aerospace Sci Tech, 2018, 77: 774–787

    Article  Google Scholar 

  30. Fang G, Wang X M, Wang K, et al. Vision-based online learning kinematic control for soft robots using local Gaussian process regression. IEEE Robot Autom Lett, 2019, 4: 1194–1201

    Article  Google Scholar 

  31. Unhelkar V V, Lasota P A, Tyroller Q, et al. Human-aware robotic assistant for collaborative assembly: Integrating human motion prediction with planning in time. IEEE Robot Autom Lett, 2018, 3: 2394–2401

    Article  Google Scholar 

  32. Mordatch L Mishra N, Eppner C, et al. Combining model-based policy search with online model learning for control of physical humanoids. In: 2016 IEEE international conference on robotics and automation (ICRA). Stockholm, 2016. 242–248

  33. Naets F, Croes J, Desmet W. An online coupled state/input/parameter estimation approach for structural dynamics. Comput Methods Appl Mech Eng, 2015, 283: 1167–1188

    Article  MathSciNet  MATH  Google Scholar 

  34. Wen C Y, Zhou J, Liu Z T, et al. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans Automat Contr, 2011, 56: 1672–1678

    Article  MathSciNet  MATH  Google Scholar 

  35. Madsen E, Rosenlund O S, Brandt D, et al. Comprehensive modeling and identification of nonlinear joint dynamics for collaborative industrial robot manipulators. Control Eng Pract, 2020, 101: 104462

    Article  Google Scholar 

  36. Swevers J, Verdonck W, De Schutter J. Dynamic model identification for industrial robots. IEEE Control Syst Mag, 2007, 27: 58–71

    Article  MathSciNet  MATH  Google Scholar 

  37. Han Y, Wu J H, Liu C, et al. An iterative approach for accurate dynamic model identification of industrial robots. IEEE Trans Robot, 2020, 36: 1577–1594

    Article  Google Scholar 

  38. Khalil W, Gautier M, Lemoine P. Identification of the payload inertial parameters of industrial manipulators. In: Proceedings 2007 IEEE International Conference on Robotics and Automation. Rome, 2007. 4943–4948

  39. Lee S D, Jung S. Real-time inverse model estimation by a recursive least squares method for disturbance observer-based control systems: Balancing control of a single-wheel robot. Int J Control Autom Syst, 2019, 17: 1911–1920

    Article  Google Scholar 

  40. Shen T, Dong Y L, He D X, et al. Online identification of time-varying dynamical systems for industrial robots based on sparse Bayesian learning. Sci China Tech Sci, 2022, 65: 386–395

    Article  Google Scholar 

  41. Brunton S L, Proctor J L, Kutz J N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci USA, 2016, 113: 3932–3937

    Article  MathSciNet  MATH  Google Scholar 

  42. Pan W, Yuan Y, Goncalves J, et al. A sparse Bayesian approach to the identification of nonlinear state-space systems. IEEE Trans Automat Contr, 2016, 61: 182–187

    Article  MathSciNet  MATH  Google Scholar 

  43. Kingma D P, Ba J. Adam: A method for stochastic optimization. ArXiv: 1412.6980

  44. Horowitz R, Tomizuka M. An adaptive control scheme for mechanical manipulators-compensation of nonlinearity and decoupling control. J Dynamic Syst Measurement Control, 1986, 108: 127–135

    Article  MATH  Google Scholar 

  45. Swevers J, Ganseman C, Tukel D B, et al. Optimal robot excitation and identification. IEEE Trans Robot Automat, 1997, 13: 730–740

    Article  Google Scholar 

  46. Kushida D, Nakamura M, Goto S, et al. Human direct teaching of industrial articulated robot arms based on force-free control. Artif Life Robotics, 2001, 5: 26–32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Yuan.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 52188102).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, T., Qiao, X., Dong, Y. et al. Deep adaptive control with online identification for industrial robots. Sci. China Technol. Sci. 65, 2593–2604 (2022). https://doi.org/10.1007/s11431-022-2183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2183-7

Navigation