Skip to main content
Log in

Design and analysis of an untethered micro flapping robot which can glide on the water

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Flapping-wing flying insects possess various advantages, such as high agility and efficiency. The design and manufacture of insect-scale flapping-wing micro aerial vehicle (FWMAV) have attracted increasing attention in recent decades. Due to the limitations of size and weight, the FWMAV with an onboard battery which can fully mimic insect flight has not been achieved. In this work, we design and fabricate a highly integrated flapping-wing microrobot named Robomoth. The Robomoth consists of a carbon chassis, customized power and control devices, and two piezoelectric ceramic actuators symmetrically distributed in the thorax and controlled individually. It weighs 2.487 g, spans 5.9 cm in length, possesses 9 cm of wingspan, and carries a 0.355 g rechargeable lithium battery. We demonstrate the mobility of the Robomoth through untethered gliding and making turns on the water surface. A simplified dynamic model of the flapping system is proposed to explain the relationship between the driving frequency and the flapping amplitude. The Robomoth is one new untethered bioinspired flapping-wing robot that can perform stable water surface motion, which holds potential applications such as search and rescue on the water. The robot can also provide insight for designing insect-scale flying vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pornsin-sirirak T N, Tai Y, Ho C, et al. Microbat: A palm-sized electrically powered ornithopter. In: Proceedings of the NASA/JPL Workshop on Biomorphic Robotics, 2001. 17

    Google Scholar 

  2. Platzer M F, Jones K D, Young J, et al. Flapping wing aerodynamics: Progress and challenges. AIAA J, 2008, 46: 2136–2149

    Article  Google Scholar 

  3. Bradshaw N, Lentink D. Aerodynamic and structural dynamic identification of a flapping wing micro air vehicle. In: Proceedings of the 26th AIAA Applied Aerodynamics Conference. Honolulu, Hawaii: American Institute of Aeronautics and Astronautics, 2008

    Google Scholar 

  4. Zhao L, Huang Q, Deng X, et al. Aerodynamic effects of flexibility in flapping wings. J R Soc Interface, 2010, 7: 485–497

    Article  Google Scholar 

  5. Keennon M, Klingebiel K, Won H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In: Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee: American Institute of Aeronautics and Astronautics, 2012. 588

    Google Scholar 

  6. Tu Z, Fei F, Deng X. Untethered flight of an at-scale dual-motor hummingbird robot with bio-inspired decoupled wings. IEEE Robot Autom Lett, 2020, 5: 4194–4201

    Google Scholar 

  7. Ramezani A, Shi X, Chung S J, et al. Bat Bot (B2), a biologically inspired flying machine. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden: IEEE, 2016. 3219–3226

    Chapter  Google Scholar 

  8. Ramezani A, Chung S J, Hutchinson S. A biomimetic robotic platform to study flight specializations of bats. Sci Robot, 2017, 2: eaal2505

    Article  Google Scholar 

  9. Dileo C, Deng X. Design of and experiments on a dragonfly-inspired robot. Adv Robot, 2009, 23: 1003–1021

    Article  Google Scholar 

  10. Wood R J. Liftoff of a 60 mg flapping-wing MAV. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego: IEEE, 2007. 1889–1894

    Chapter  Google Scholar 

  11. Pérez-Arancibia N O, Whitney J P, Wood R J. Lift force control of flapping-wing microrobots using adaptive feedforward schemes. IEEE ASME Trans Mechatron, 2013, 18: 155–168

    Article  Google Scholar 

  12. Jafferis N T, Helbling E F, Karpelson M, et al. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature, 2019, 570: 491–495

    Article  Google Scholar 

  13. Chen Y, Helbling E F, Gravish N, et al. Hybrid aerial and aquatic locomotion in an at-scale robotic insect. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg: IEEE, 2015. 331–338

    Google Scholar 

  14. Chen Y, Zhao H, Mao J, et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature, 2019, 575: 324–329

    Article  Google Scholar 

  15. Chukewad Y M, James J, Singh A, et al. Robofly: An insect-sized robot with simplified fabrication that is capable of flight, ground, and water surface locomotion. IEEE Trans Robot, 2021, 37: 2025–2040

    Article  Google Scholar 

  16. James J, Iyer V, Chukewad Y, et al. Liftoff of a 190 mg laser-powered aerial vehicle: The lightest wireless robot to fly. In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD: IEEE, 2018. 3587–3594

    Chapter  Google Scholar 

  17. Chukewad Y M, Singh A T, James J M, et al. A new robot fly design that is easier to fabricate and capable of flight and ground locomotion. In: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018. 4875–4882

    Google Scholar 

  18. Fuller S B. Four wings: An insect-sized aerial robot with steering ability and payload capacity for autonomy. IEEE Robot Autom Lett, 2019, 4: 570–577

    Article  Google Scholar 

  19. Hoff J, Syed U, Ramezani A, et al. Trajectory planning for a bat-like flapping wing robot. In: Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau: IEEE, 2019. 6800–6805

    Google Scholar 

  20. de Croon G C H E, de Clercq K M E, Ruijsink R, et al. Design, aerodynamics, and vision-based control of the delfly. Int J Micro Air Vehicles, 2009, 1: 71–97

    Article  Google Scholar 

  21. de Croon G C H E, Perçin M, Remes B D W, et al. The DelFly. Dordrecht: Springer Netherlands, 2016

    Book  Google Scholar 

  22. Karásek M, Muijres F T, De Wagter C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science, 2018, 361: 1089–1094

    Article  MathSciNet  MATH  Google Scholar 

  23. Fei F, Tu Z, Yang Y, et al. Flappy hummingbird: An open source dynamic simulation of flapping wing robots and animals. In: Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), 2019. 9223–9229

    Chapter  Google Scholar 

  24. Phan H V, Kang T, Park H C. Design and stable flight of a 21 g insectlike tailless flapping wing micro air vehicle with angular rates feedback control. Bioinspir Biomim, 2017, 12: 036006

    Article  Google Scholar 

  25. Chin Y W, Kok J M, Zhu Y Q, et al. Efficient flapping wing drone arrests high-speed flight using post-stall soaring. Sci Robot, 2020, 5: eaba2386

    Article  Google Scholar 

  26. Rosen M H, le Pivain G, Sahai R, et al. Development of a 3.2 g untethered flapping-wing platform for flight energetics and control experiments. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm: IEEE, 2016. 3227–3233

    Chapter  Google Scholar 

  27. Phan H V, Park H C. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science, 2020, 370: 1214–1219

    Article  Google Scholar 

  28. Hines L, Campolo D, Sitti M. Liftoff of a motor-driven, flapping-wing microaerial vehicle capable of resonance. IEEE Trans Robot, 2014, 30: 220–232

    Article  Google Scholar 

  29. Zou Y, Zhang W, Zhang Z. Liftoff of an electromagnetically driven insect-inspired flapping-wing robot. IEEE Trans Robot, 2016, 32: 1285–1289

    Article  Google Scholar 

  30. Wang C, Zhang W, Zou Y, et al. A sub-100 mg electromagnetically driven insect-inspired flapping-wing micro robot capable of liftoff and control torques modulation. J Bionic Eng, 2020, 17: 1085–1095

    Article  Google Scholar 

  31. Wang C, Zhang W, Hu J, et al. A modified quasisteady aerodynamic model for a sub-100 mg insect-inspired flapping-wing robot. Appl BIon Biomech, 2020, 2020: 1–12

    Google Scholar 

  32. Wood R J. The First takeoff of a biologically inspired at-scale robotic insect. IEEE Trans Robot, 2008, 24: 341–347

    Article  Google Scholar 

  33. Wood R J, Avadhanula S, Sahai R, et al. Microrobot design using fiber reinforced composites. J Mech Des, 2008, 130: 052304

    Article  Google Scholar 

  34. Sane S P. The aerodynamics of insect flight. J Exp Biol, 2003, 206: 4191–4208

    Article  Google Scholar 

  35. Wang Z J. Dissecting insect flight. Annu Rev Fluid Mech, 2005, 37: 183–210

    Article  MathSciNet  MATH  Google Scholar 

  36. Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight. Science, 1999, 284: 1954–1960

    Article  Google Scholar 

  37. Srygley R B, Thomas A L R. Unconventional lift-generating mechanisms in free-flying butterflies. Nature, 2002, 420: 660–664

    Article  Google Scholar 

  38. Wood R J, Avadhanula S, Menon M, et al. Microrobotics using composite materials: The micromechanical flying insect thorax. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422). Taipei: IEEE, 2003. 1842–1849

    Chapter  Google Scholar 

  39. Steltz E, Avadhanula S, Fearing R S. High lift force with 275 Hz wing beat in MFI. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego: IEEE, 2007. 3987–3992

    Chapter  Google Scholar 

  40. Finio B M, Whitney J P, Wood R J. Stroke plane deviation for a microrobotic fly. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei: IEEE, 2010. 3378–3385

    Chapter  Google Scholar 

  41. Finio B M, Wood R J. Distributed power and control actuation in the thoracic mechanics of a robotic insect. Bioinspir Biomim, 2010, 5: 045006

    Article  Google Scholar 

  42. Truong N T, Phan H V, Park H C. Design and demonstration of a bioinspired flapping-wing-assisted jumping robot. Bioinspir Biomim, 2019, 14: 036010

    Article  Google Scholar 

  43. Wood R J, Steltz E, Fearing R S. Optimal energy density piezoelectric bending actuators. Sens Actuat A-Phys, 2005, 119: 476–488

    Article  Google Scholar 

  44. Mukundarajan H, Bardon T C, Kim D H, et al. Surface tension dominates insect flight on fluid interfaces. J Exp Biol, 2016, 219: 752–766

    Article  Google Scholar 

  45. Zhou S, Zhang W, Zou Y, et al. Piezoelectric driven insect-inspired robot with flapping wings capable of skating on the water. Electron lett, 2017, 53: 579–580

    Article  Google Scholar 

  46. Dadfarnia M, Jalili N, Xian B, et al. Lyapunov-based vibration control of translational Euler-Bernoulli beams using the stabilizing effect of beam damping mechanisms. J Vib Control, 2004, 10: 933–961

    Article  MathSciNet  MATH  Google Scholar 

  47. Dadfarnia M, Jalili N, Xian B, et al. A Lyapunov-based piezoelectric controller for flexible Cartesian robot manipulators. J Dynamic Syst Measurement Control, 2004, 126: 347–358

    Article  Google Scholar 

  48. Chen Y, Ma K, Wood R J. Influence of wing morphological and inertial parameters on flapping flight performance. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016. 2329–2336

    Google Scholar 

  49. St. Pierre R, Bergbreiter S. Toward autonomy in sub-gram terrestrial robots. Annu Rev Control Robot Auton Syst, 2019, 2: 231–252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShaoXing Qu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 91748209), the 111 Project (Grant No. B21034), and the Key Research and Development Program of Zhejiang Province (Grant No. 2020C05010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, Y., Liu, T. et al. Design and analysis of an untethered micro flapping robot which can glide on the water. Sci. China Technol. Sci. 65, 1749–1759 (2022). https://doi.org/10.1007/s11431-022-2064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2064-9

Keywords

Navigation