Skip to main content
Log in

Magnetohydrostatic modeling of the solar atmosphere

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magnetic structure. While the force-freeness assumption is well satisfied in the solar corona, the lower atmosphere is not force-free given the high plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account plasma forces, such as pressure gradient and gravitational force, is considered to be more appropriate to describe the lower atmosphere. This paper reviews both analytical and numerical extrapolation methods based on the MHS assumption for calculating the magnetic fields and plasma in the solar atmosphere from measured magnetograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Régnier S. Magnetic field extrapolations into the corona: Success and future improvements. Sol Phys, 2013, 288: 481–505

    Article  Google Scholar 

  2. Guo Y, Cheng X, Ding M D. Origin and structures of solar eruptions II: Magnetic modeling. Sci China Earth Sci, 2017, 60: 1408–1439

    Article  Google Scholar 

  3. Wiegelmann T, Sakurai T. Solar force-free magnetic fields. Living Rev Sol Phys, 2021, 18: 1

    Article  Google Scholar 

  4. Gary G A. Plasma beta above a solar active region: Rethinking the paradigm. Sol Phys, 2001, 203: 71–86

    Article  Google Scholar 

  5. Shafranov V D. On magnetohydrodynamical equilibrium configurations. Sov J Exp Theor Phys, 1958, 6: 545

    MathSciNet  MATH  Google Scholar 

  6. Boozer A H. Physics of magnetically confined plasmas. Rev Mod Phys, 2005, 76: 1071–1141

    Article  Google Scholar 

  7. Hesse M, Birn J. Three-dimensional magnetotail equilibria by numerical relaxation techniques. J Geophys Res, 1993, 98: 3973–3982

    Article  Google Scholar 

  8. Scherrer P H, Schou J, Bush R I, et al. The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol Phys, 2012, 275: 207–227

    Article  Google Scholar 

  9. Keil S L, Rimmele T R Wagner J, et al. ATST: The largest Polarimeter. Solar polarization 6. In: Proceedings of the Astronomical Society of the Pacific Conference Series. Hawaii, 2011. 319

  10. Parker E N. Topological dissipation and the small-scale fields in turbulent gases. Astrophys J, 1972, 174: 499

    Article  Google Scholar 

  11. Dungey J W. A family of solutions of the magneto-hydrostatic problem in a conducting atmosphere in a gravitational field. Mon Not R Astron Soc, 1953, 113: 180–187

    Article  MathSciNet  MATH  Google Scholar 

  12. Low B C. Nonisothermal magnetostatic equilibria in a uniform gravity field. I. Mathematical formulation. Astrophys J, 1975, 197: 251–255

    Article  Google Scholar 

  13. Hundhausen J R Hundhausen A J, Zweibel E G. Magnetostatic atmospheres in a spherical geometry and their application to the solar corona. J Geophys Res, 1981, 86: 11117–11,126

    Article  Google Scholar 

  14. Uchida Y, Low B C. Equilibrium configuration of the magnetosphere of a star loaded with accreted magnetized mass. J Astrophys Astr, 1981, 2: 405–419

    Article  Google Scholar 

  15. Amari T, Aly J J. Two-dimensional isothermal magnetostatic equilibria in a gravitational field. I. Unsheared equilibria. Astron Astrophys, 1989, 208: 361–373

    MATH  Google Scholar 

  16. Low B C. Magnetostatic atmospheres with variations in three dimensions. Astrophys J, 1982, 263: 952–969

    Article  MathSciNet  Google Scholar 

  17. Low B C. Three-dimensional magnetostatic atmospheres. Magnetic field with vertically oriented tension force. Astrophys J, 1984, 277: 415–421

    Article  Google Scholar 

  18. Hu W R, Hu Y Q, Low B C. Non-axisymmetric magnetostatic equilibrium. Sol Phys, 1983, 83: 195–205

    Article  Google Scholar 

  19. Low B C. Three-dimensional structures of magnetostatic atmospheres. I. Theory. Astrophys J, 1985, 293: 31–43

    Article  Google Scholar 

  20. Schmidt H U. On the observable effects of magnetic energy storage and release connected with solar flares. In: Proceedings of the AASNASA Symposium, the Physics of Solar Flares. Washington DC, 1964. 50: 107

  21. Chiu Y T, Hilton H H. Exact Green’s function method of solar force-free magnetic-field computations with constant alpha. I. Theory and basic test cases. Astrophys J, 1977, 212: 873–885

    Article  Google Scholar 

  22. Bogdan T J, Low B C. The three-dimensional structure of magnetostatic atmospheres. II. Modeling the large-scale corona. Astrophys J, 1986, 306: 271

    Article  Google Scholar 

  23. Low B C. Three-dimensional structures of magnetostatic atmospheres. III. A general formulation. Astrophys J, 1991, 370: 427

    Article  Google Scholar 

  24. Osherovich V A. Quasi-potential magnetic fields in stellar atmospheres. I. Static model of magnetic granulation. Astrophys J, 1985, 298: 235–239

    Article  Google Scholar 

  25. Osherovich V A. The eigenvalue approach in modelling solar magnetic structures. Aust J Phys, 1985, 38: 975–980

    Google Scholar 

  26. Low B C. Three-dimensional structures of magnetostatic atmospheres. IV. Magnetic structures over a solar active region. Astrophys J, 1992, 399: 300

    Article  Google Scholar 

  27. Neukirch T. On self-consistent three-dimensional analytic solutions of the magnetohydrostatic equations. Astron Astrophys, 1995, 301: 628

    Google Scholar 

  28. Petrie G J, Neukirch T. The Green’s function method for a special class of linear three-dimensional magnetohydrostatic equilibria. Astron Astrophys, 2000, 356: 735–746

    Google Scholar 

  29. Neukirch T, Wiegelmann T. Analytical three-dimensional magnetohydrostatic equilibrium solutions for magnetic field extrapolation allowing a transition from non-force-free to force-free magnetic fields. Sol Phys, 2019, 294: 171

    Article  Google Scholar 

  30. Neukirch T. Nonlinear self-consistent three-dimensional arcade-like solutions of the magnetohydrostatic equations. Astron Astrophys, 1997, 325: 847–856

    Google Scholar 

  31. Neukirch T, Rastätter L. A new method for calculating a special class of self-consistent three-dimensional magnetohydrostatic equilibria. Astron Astrophys, 1999, 348: 1000–1004

    Google Scholar 

  32. Nakagawa Y, Raadu M A. On practical representation of magnetic field. Sol Phys, 1972, 25: 127–135

    Article  Google Scholar 

  33. MacTaggart D, Elsheikh A, McLaughlin J A, et al. Non-symmetric magnetohydrostatic equilibria: A multigrid approach. Astron Astrophys, 2013, 556: A40

    Article  Google Scholar 

  34. Neukirch T. Three-dimensional analytical magnetohydrostatic equilibria of rigidly rotating magnetospheres in cylindrical geometry. Geophys Astrophys Fluid Dyn, 2009, 103: 535–547

    Article  MathSciNet  Google Scholar 

  35. Al-Salti N, Neukirch T. Three-dimensional solutions of the magnetohydrostatic equations: Rigidly rotating magnetized coronae in spherical geometry. Astron Astrophys, 2010, 520: A75

    Article  MATH  Google Scholar 

  36. Al-Salti N, Neukirch T, Ryan R. Three-dimensional solutions of the magnetohydrostatic equations: Rigidly rotating magnetized coronae in cylindrical geometry. Astron Astrophys, 2010, 514: A38

    Article  MATH  Google Scholar 

  37. Wilson F, Neukirch T. Three-dimensional solutions of the magnetohydrostatic equations for rigidly rotating magnetospheres in cylindrical coordinates. Geophys Astrophys Fluid Dyn, 2018, 112: 74–95

    Article  MathSciNet  MATH  Google Scholar 

  38. Low B C. Three-dimensional structures of magnetostatic atmospheres. V. Coupled electric current systems. Astrophys J, 1993, 408: 689

    Article  Google Scholar 

  39. Choe G S, Jang M. Magnetic flux-current surfaces of magnetohydrostatic equilibria. J Korean Astron Soc, 2013, 46: 261–268

    Article  Google Scholar 

  40. Aulanier G, Démoulin P, Schmieder B, et al. Magnetohydrostatic model of a bald-patch flare. Sol Phys, 1998, 183: 369–388

    Article  Google Scholar 

  41. Wiegelmann T, Neukirch T, Nickeler D H, et al. Magneto-static modeling of the mixed plasma beta solar atmosphere based on sunrise/TMaX data. Astrophys J, 2015, 815: 10

    Article  Google Scholar 

  42. Wiegelmann T, Neukirch T, Nickeler D H, et al. Magneto-static modeling from sunrise/imax: Application to an active region observed with sunrise II. Astrophys J Suppl Ser, 2017, 229: 18

    Article  Google Scholar 

  43. Solanki S K, Riethmüller T L, Barthol P, et al. The second flight of the sunrise balloon-borne solar observatory: Overview of instrument updates, the flight, the data, and first results. Astrophys J Suppl Ser, 2017, 229: 2

    Article  Google Scholar 

  44. Hagino M, Sakurai T. Latitude variation of helicity in solar active regions. Publ Astron Soc Jpn, 2004, 56: 831–843

    Article  Google Scholar 

  45. Aulanier G, Demoulin P. 3-D magnetic configurations supporting prominences. I. The natural presence of lateral feet. Astron Astrophys, 1998, 329: 1125–1137

    Google Scholar 

  46. Molodensky M M. Integral properties of force-free fields. Sov Astron, 1969, 12: 585

    Google Scholar 

  47. Molodensky M M. Equilibrium and stability of force-free magnetic field. Sol Phys, 1974, 39: 393–404

    Article  Google Scholar 

  48. Wiegelmann T, Inhester B, Sakurai T. Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction. Sol Phys, 2006, 233: 215–232

    Article  Google Scholar 

  49. Low B C. Three-dimensional structures of magnetostatic atmospheres. VII. Magnetic flux surfaces and boundary conditions. Astrophys J, 2005, 625: 451–462

    Article  Google Scholar 

  50. Aly J J. On the reconstruction of the nonlinear force-free coronal magnetic field from boundary data. Sol Phys, 1989, 120: 19–48

    Article  Google Scholar 

  51. Fletcher L, López Fuentes M C, Mandrini C H, et al. A relationship between transition region brightenings, abundances, and magnetic topology. Sol Phys, 2001, 203: 255–287

    Article  Google Scholar 

  52. Mandrini C H, Démoulin P, Schmieder B, et al. The role of magnetic bald patches in surges and arch filament systems. Astron Astrophys, 2002, 391: 317–329

    Article  Google Scholar 

  53. Aulanier G, Démoulin P, Mein N, et al. 3-D magnetic configurations supporting prominences. III. Evolution of fine structures observed in a filament channel. Astron Astrophys, 1999, 342: 867–880

    Google Scholar 

  54. Dudík J, Aulanier G, Schmieder B, et al. Topological departures from translational invariance along a filament observed by THEMIS. Sol Phys, 2008, 248: 29–50

    Article  Google Scholar 

  55. Martínez Pillet V, del Toro Iniesta J C, Álvarez-Herrero A, et al. The imaging magnetograph eXperiment (IMaX) for the sunrise balloon-borne solar observatory. Sol Phys, 2011, 268: 57–102

    Article  Google Scholar 

  56. Solanki S K, Barthol P, Danilovic S, et al. Sunrise: Instrument, mission, data, and first results. Astrophys J, 2010, 723: L127–L133

    Article  Google Scholar 

  57. Jafarzadeh S, Rutten R J, Solanki S K, et al. Slender Ca II H fibrils mapping magnetic fields in the low solar chromosphere. Astrophys J Suppl Ser, 2017, 229: 11

    Article  Google Scholar 

  58. Mackay D H, Yeates A R. The Sun’s global photospheric and coronal magnetic fields: Observations and models. Living Rev Sol Phys, 2012, 9: 6

    Article  Google Scholar 

  59. Bagenal F, Gibson S. Modeling the large-scale structure of the solar corona. J Geophys Res, 1991, 96: 17663–17674

    Article  Google Scholar 

  60. Gibson S E, Bagenal F. Large-scale magnetic field and density distribution in the solar minimum corona. J Geophys Res, 1995, 100: 19865–19880

    Article  Google Scholar 

  61. Gibson S E, Bagenal F, Low B C. Current sheets in the solar minimum corona. J Geophys Res, 1996, 101: 4813–4823

    Article  Google Scholar 

  62. Zhao X, Todd Hoeksema J. Unique determination of model coronal magnetic fields using photospheric observations. Sol Phys, 1993, 143: 41–48

    Article  Google Scholar 

  63. Zhao X, Hoeksema J T. A coronal magnetic field model with horizontal volume and sheet currents. Sol Phys, 1994, 151: 91–105

    Article  Google Scholar 

  64. Zhao X, Hoeksema J T. Predicting the heliospheric magnetic field using the current sheet-source surface model. Adv Space Res, 1995, 16: 181–184

    Article  Google Scholar 

  65. Schatten K H. Current sheet magnetic model for the solar corona. Cosmic Electrodyn, 1971, 2: 232–245

    Google Scholar 

  66. Ambrož P, Druckmüller M, Galal A A, et al. 3D coronal structures and magnetic field during the total solar eclipse of 29 March 2006. Sol Phys, 2009, 258: 243–265

    Article  Google Scholar 

  67. Yeates A R Amari T, Contopoulos I, et al. Global non-potential magnetic models of the solar corona during the March 2015 eclipse. Space Sci Rev, 2018, 214: 99

    Article  Google Scholar 

  68. Zhao X P, Hoeksema, J T, Scherrer P H. Modeling the 1994 April 14 polar crown SXR arcade using three-dimensional magnetohydrostatic equilibrium solutions. Astrophys J, 2000, 538: 932–939

    Article  Google Scholar 

  69. Rudenko G V. A constructing method for a self-consistent three-dimensional solution of the magnetohydrostatic equations using full-disk magnetogram data. Sol Phys, 2001, 198: 279–287

    Article  Google Scholar 

  70. Ruan P, Wiegelmann T, Inhester B, et al. A first step in reconstructing the solar corona self-consistently with a magnetohydrostatic model during solar activity minimum. Astron Astrophys, 2008, 481: 827–834

    Article  MATH  Google Scholar 

  71. Wiegelmann T, Neukirch T. An optimization principle for the computation of MHD equilibria in the solar corona. Astron Astrophys, 2006, 457: 1053–1058

    Article  Google Scholar 

  72. Zhu X, Wiegelmann T. On the extrapolation of magnetohydrostatic equilibria on the Sun. Astrophys J, 2018, 866: 130

    Article  Google Scholar 

  73. Zhu X, Wiegelmann T. Testing magnetohydrostatic extrapolation with radiative MHD simulation of a solar flare. Astron Astrophys, 2019, 631: A162

    Article  Google Scholar 

  74. Zhu X S, Wang H N, Du Z L, et al. Forced field extrapolation: Testing a magnetohydrodynamic (MHD) relaxation method with a flux-rope emergence model. Astrophys J, 2013, 768: 119

    Article  Google Scholar 

  75. Miyoshi T, Kusano K, Inoue S. A magnetohydrodynamic relaxation method for non-force-free magnetic field in magnetohydrostatic equilibrium. Astrophys J Suppl Ser, 2020, 247: 6

    Article  Google Scholar 

  76. Gilchrist S A, Wheatland M S. A magnetostatic grad-rubin code for coronal magnetic field extrapolations. Sol Phys, 2013, 282: 283–302

    Article  Google Scholar 

  77. Gilchrist S A, Braun D C, Barnes G. A fixed-point scheme for the numerical construction of magnetohydrostatic atmospheres in three dimensions. Sol Phys, 2016, 291: 3583–3603

    Article  Google Scholar 

  78. Stern D P. Euler potentials. Am J Phys, 1970, 38: 494–501

    Article  Google Scholar 

  79. Stern D P. Representation of magnetic fields in space. Rev Geophys, 1976, 14: 199–214

    Article  Google Scholar 

  80. Schindler K. Physics of Space Plasma Activity. Cambridge: Cambridge University Press, 2006. 522

    Book  Google Scholar 

  81. Wheatland M S, Sturrock P A, Roumeliotis G. An optimization approach to reconstructing force-free fields. Astrophys J, 2000, 540: 1150–1155

    Article  Google Scholar 

  82. Low B C, Lou Y Q. Modeling solar force-free magnetic fields. Astrophys J, 1990, 352: 343

    Article  Google Scholar 

  83. Wiegelmann T, Neukirch T, Ruan P, et al. Optimization approach for the computation of magnetohydrostatic coronal equilibria in spherical geometry. Astron Astrophys, 2007, 475: 701–706

    Article  Google Scholar 

  84. Kageyama A, Sato T. “Yin-Yang grid”: An overset grid in spherical geometry. Geochem Geophys Geosyst, 2004, 5: Q09005

    Article  Google Scholar 

  85. Wiegelmann T. Optimization code with weighting function for the reconstruction of coronal magnetic fields. Sol Phys, 2004, 219: 87–108

    Article  Google Scholar 

  86. Wiegelmann T, Thalmann J K, Inhester B, et al. How should one optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms? Sol Phys, 2012,: 37–51

  87. Cheung M C M, Rempel M, Chintzoglou G, et al. A comprehensive three-dimensional radiative magnetohydrodynamic simulation of a solar flare. Nat Astron, 2019, 3: 160–166

    Article  Google Scholar 

  88. Zhu X, Wiegelmann T, Solanki S K. Magnetohydrostatic modeling of AR11768 based on a SUNRISE/IMaX vector magnetogram. Astron Astrophys, 2020, 640: A103

    Article  Google Scholar 

  89. Hou Z, Tian H, Chen H, et al. Formation of solar quiescent coronal loops through magnetic reconnection in an emerging active region. Astrophys J, 2021, 915: 39

    Article  Google Scholar 

  90. Jafarzadeh S, Wedemeyer S, Fleck B, et al. An overall view of temperature oscillations in the solar chromosphere with ALMA. Phil Trans R Soc A, 2021, 379: rsta.2020.0174

  91. Mikic Z, Barnes D C, Schnack D D. Dynamical evolution of a solar coronal magnetic field arcade. Astrophys J, 1988, 328: 830

    Article  Google Scholar 

  92. Roumeliotis G. The “stress-and-relax” method for reconstructing the coronal magnetic field from vector magnetograph data. Astrophys J, 1996, 473: 1095–1103

    Article  Google Scholar 

  93. McClymont A N, Jiao L, Mikic Z. Problems and progress in computing three-dimensional coronal active region magnetic fields from boundary data. Sol Phys, 1997, 174: 191–218

    Article  Google Scholar 

  94. Valori G, Kliem B, Keppens R. Extrapolation of a nonlinear force-free field containing a highly twisted magnetic loop. Astron Astrophys, 2005, 433: 335–347

    Article  MATH  Google Scholar 

  95. Jiang C, Feng X, Xiang C. A new code for nonlinear force-free field extrapolation of the global corona. Astrophys J, 2012, 755: 62

    Article  Google Scholar 

  96. Guo Y, Xia C, Keppens R et al. Magneto-frictional modeling of coronal nonlinear force-free fields. I. Testing with analytic solutions. Astrophys J, 2016, 828: 82

    Article  Google Scholar 

  97. Zhu X, Wang H, Du Z, et al. Forced field extrapolation of the magnetic structure of the Ha fibrils in the solar chromosphere. Astrophys J, 2016, 826: 51

    Article  Google Scholar 

  98. Wang R Liu Y D, Zimovets I, et al. Sympathetic solar filament eruptions. Astrophys J, 2016, 827: L12

    Article  Google Scholar 

  99. Zhao J, Schmieder B, Li H, et al. Observational evidence of magnetic reconnection for brightenings and transition region arcades in IRIS observations. Astrophys J, 2017, 836: 52

    Article  Google Scholar 

  100. Tian H, Zhu X, Peter H, et al. Magnetic reconnection at the earliest stage of solar flux emergence. Astrophys J, 2018, 854: 174

    Article  Google Scholar 

  101. Chen Y J, Tian H, Zhu X S, et al. Solar ultraviolet bursts in a coordinated observation of IRIS, Hinode and SDO. Sci China Tech Sci, 2019, 62: 1555–1564

    Article  Google Scholar 

  102. Zhu X, Wang H, Cheng X, et al. A solar blowout jet caused by the eruption of a magnetic flux rope. Astrophys J, 2017, 844: L20

    Article  Google Scholar 

  103. Song Y L, Guo Y, Tian H, et al. Observations of a white-light flare associated with a filament eruption. Astrophys J, 2018, 854: 64

    Article  Google Scholar 

  104. Miao Y, Liu Y, Li H B, et al. A blowout jet associated with one obvious extreme-ultraviolet wave and one complicated coronal mass ejection event. Astrophys J, 2018, 869: 39

    Article  Google Scholar 

  105. Joshi N C, Zhu X, Schmieder B, et al. Generalization of the magnetic field configuration of typical and atypical confined flares. Astrophys J, 2019, 871: 165

    Article  Google Scholar 

  106. Song Y, Tian H, Zhu X, et al. A white-light flare powered by magnetic reconnection in the lower solar atmosphere. Astrophys J, 2020, 893: L13

    Article  Google Scholar 

  107. Fu H, Harrison R A, Davies J A, et al. The high helium abundance and charge states of the interplanetary CME and its material source on the Sun. Astrophys J, 2020, 900: L18

    Article  Google Scholar 

  108. Grad H, Rubin H. Hydromagnetic equilibria and force-free fields. In: Peaceful uses of atomic energy. Theoretical and experimental aspects of controlled nuclear fusion. Technical Report. New York University, Institut of Mathematical Sciences, New York, 1958. A/CONF.15/P/386

    Book  Google Scholar 

  109. Sakurai T. Calculation of force-free magnetic field with non-constant α. Sol Phys, 1981, 69: 343–359

    Article  Google Scholar 

  110. Amari T, Boulmezaoud T Z, Mikic Z. An iterative method for the reconstructionbreak of the solar coronal magnetic field. I. Method for regular solutions. Astron Astrophys, 1999, 350: 1051–1059

    Google Scholar 

  111. Wheatland M S. Calculating and testing nonlinear force-free fields. Sol Phys, 2007, 245: 251–262

    Article  Google Scholar 

  112. Low B C. Exact static equilibrium of vertically oriented magnetic flux tubes. Sol Phys, 1980, 67: 57–77

    Article  Google Scholar 

  113. Wheatland M S. A fast current-field iteration method for calculating nonlinear force-free fields. Sol Phys, 2006, 238: 29–39

    Article  Google Scholar 

  114. Zwingmann W, Schindler K Birn J. On sheared magnetic field structures containing neutral points. Sol Phys, 1985, 99: 133–143

    Article  Google Scholar 

  115. Zwingmann W. Theoretical study of onset conditions for solar eruptive processes. Sol Phys, 1987, 111: 309–331

    Article  Google Scholar 

  116. Platt U, Neukirch T. Theoretical study of onset conditions for solar eruptive processes: Influence of the boundaries. Sol Phys, 1994, 153: 287–306

    Article  Google Scholar 

  117. Romeou Z, Neukirch T. Self-consistent models of solar magnetic structures in three dimensions. In: Proceedings of the 9th European Meeting of Solar Physics, Magnetic Fields and Solar Processes. Florence, 1999. SP-448: 871

  118. Romeou Z, Neukirch T. On the application of numerical continuation methods to the calculation of magnetostatic equilibria. J Atmos Sol-Terrestrial Phys, 2002, 64: 639–644

    Article  Google Scholar 

  119. Mathews N H, Flyer N, Gibson S E. Solving 3D magnetohydrostatics with RBF-FD: Applications to the solar corona. arXiv: 2112.04561

  120. Gibson S E, Low B C. A Time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection. Astrophys J, 1998, 493: 460–473

    Article  Google Scholar 

  121. Aly J J. On some properties of force-free magnetic fields in infinite regions of space. Astrophys J, 1984, 283: 349–362

    Article  Google Scholar 

  122. Metcalf T R, Jiao L, McClymont A N, et al. Is the solar chromospheric magnetic field force-free? Astrophys J, 1995, 439: 474

    Article  Google Scholar 

  123. Moon Y J, Choe G S, Yun H S, et al. Force-freeness of solar magnetic fields in the photosphere. Astrophys J, 2002, 568: 422–431

    Article  Google Scholar 

  124. Tiwari S K. On the force-free nature of photospheric sunspot magnetic fields as observed from Hinode (SOT/SP). Astrophys J, 2012, 744: 65

    Article  Google Scholar 

  125. Liu S, Su J T, Zhang H Q, et al. A statistical study on force-freeness of solar magnetic fields in the photosphere. Publ Astron Soc Aust, 2013, 30: e005

    Article  Google Scholar 

  126. Metcalf T R, De Rosa M L, Schrijver C J, et al. Nonlinear force-free modeling of coronal magnetic fields, II. Modeling a filament arcade and simulated chromospheric and photospheric vector fields. Sol Phys, 2008, 247: 269–299

    Article  Google Scholar 

  127. Zhu X, Wiegelmann T, Inhester B. Preprocessing of vector magnetograms for magnetohydrostatic extrapolations. Astron Astrophys, 2020, 644: A57

    Article  Google Scholar 

  128. Zhu X, Wiegelmann T. Toward a fast and consistent approach to modeling solar magnetic fields in multiple layers. Astron Astrophys, 2022, 658: A37

    Article  Google Scholar 

  129. DeRosa M L, Schrijver C J, Barnes G, et al. A critical assessment of nonlinear force-free field modeling of the solar corona for active region 10953. Astrophys J, 2009, 696: 1780–1791

    Article  Google Scholar 

  130. Vissers G J, Danilovic S, Zhu X, J. et al. Active region chromospheric magnetic fields. arXiv: 2109.02943

  131. Malanushenko A, Longcope D W, McKenzie D E. Reconstructing the local twist of coronal magnetic fields and the three-dimensional shape of the field lines from coronal loops in extreme-ultraviolet and X-ray images. Astrophys J, 2009, 707: 1044–1063

    Article  Google Scholar 

  132. Malanushenko A, Schrijver C J, DeRosa M L, et al. Guiding nonlinear force-free modeling using coronal observations: First results using a quasi-grad-rubin scheme. Astrophys J, 2012, 756: 153

    Article  Google Scholar 

  133. Aschwanden M J. A nonlinear force-free magnetic field approximation suitable for fast forward-fitting to coronal loops. I. Theory. Sol Phys, 2013, 287: 323–344

    Article  Google Scholar 

  134. Aschwanden M J. The vertical-current approximation nonlinear force-free field code-description, performance tests, and measurements of magnetic energies dissipated in solar flares. Astrophys J Suppl Ser, 2016, 224: 25

    Article  Google Scholar 

  135. Chifu I, Inhester B, Wiegelmann T. Coronal magnetic field modeling using stereoscopy constraints. Astron Astrophys, 2015, 577: A123

    Article  Google Scholar 

  136. Chifu I, Wiegelmann T, Inhester B. Nonlinear force-free coronal magnetic stereoscopy. Astrophys J, 2017, 837: 10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoShuai Zhu.

Additional information

ZHU XiaoShuai acknowledges the National Key R&D Program of China (Grant No. 2021YFA1600500) and mobility program (Grant No. M-0068) of the Sino-German Science Center. NEUKIRCH Thomas acknowledges financial support by the UKs Science and Technology Facilities Council (STFC) (Grant Nos. ST/S000402/1 and ST/W001195/1). WIEGELMANN Thomas acknowledges financial support by DLR-grant 50 OC 2101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Neukirch, T. & Wiegelmann, T. Magnetohydrostatic modeling of the solar atmosphere. Sci. China Technol. Sci. 65, 1710–1726 (2022). https://doi.org/10.1007/s11431-022-2047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-022-2047-8

Keywords

Navigation