Skip to main content
Log in

Correlated observations linking loss of energetic protons to EMIC waves

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Electromagnetic ion cyclotron (EMIC) emission is an efficient mechanism for scattering loss of energetic protons. Here, we report an event that provides both in-situ observation of energetic proton differential fluxes in the inner magnetosphere and precipitation of protons at ionospheric altitudes. During the 7–8 September 2015 geomagnetic storm the Van Allen Probes observed strong EMIC waves around L = 5 and a distinct decrement in fluxes of tens of keV protons around pitch angles 0°–45°. Meanwhile, precipitating protons at ionospheric altitudes were found to significantly enhanced (by several orders of magnitude), measured by NOAA 18 and 19 when they magnetically linked to the Van Allen Probe-A. By solving the Fokker-Planck diffusion equation, we show that EMIC waves can efficiently produce loss of energetic protons within about 2 h in the pitch angle range of ∼ 0°–45°, comparable to the satellite observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y F, Zong Q G, Zhou X Z. Test particle simulation on the ion and electron zebra stripes and their time evolution in inner radiation belt. Sci China Tech Sci, 2018, 61: 623–632

    Article  Google Scholar 

  2. Lv X, Liu W L. Measurements of convection electric field in the inner magnetosphere. Sci China Tech Sci, 2018, 61: 1866–1871

    Article  Google Scholar 

  3. Liu B J, Zhang X X, He F. Tilt of the ring current during the main phases of intense geomagnetic storms. Sci China Tech Sci, 2019, 62: 820–828

    Article  Google Scholar 

  4. Su Z, Wang G, Liu N, et al. Direct observation of generation and propagation of magnetosonic waves following substorm injection. Geophys Res Lett, 2017, 44: 7587–7597

    Article  Google Scholar 

  5. Guo M Y, Zhou Q H, Xiao F L, et al. Upward propagation of lightning-generated whistler waves into the radiation belts. Sci China Tech Sci, 2020, 63: 243–248

    Article  Google Scholar 

  6. He J B, Jin Y Y, Xiao F L, et al. The influence of various frequency chorus waves on electron dynamics in radiation belts. Sci China Tech Sci, 2021, 64: 890–897

    Article  Google Scholar 

  7. Mauk B H, McPherron R L. An experimental test of the electromagnetic ion cyclotron instability within the earth’s magnetosphere. Phys Fluids, 1980, 23: 2111–2127

    Article  Google Scholar 

  8. Horne R B, Thorne R M. Convective instabilities of electromagnetic ion cyclotron waves in the outer magnetosphere. J Geophys Res, 1994, 99: 17259–17274

    Article  Google Scholar 

  9. Min K, Lee J, Keika K, et al. Global distribution of EMIC waves derived from THEMIS observations. J Geophys Res, 2012, 117: A05219

    Google Scholar 

  10. Meredith N P, Horne R B, Kersten T, et al. Global morphology and spectral properties of EMIC waves derived from CRRES observations. J Geophys Res Space Phys, 2014, 119: 5328–5342

    Article  Google Scholar 

  11. Zhang X J, Li W, Thorne R M, et al. Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes. Geophys Res Lett, 2016, 43: 12, 348

    Article  Google Scholar 

  12. Guan C Y, Shang X J, Xie Y Q, et al. Generation of simultaneous H+ and He+ band EMIC waves in the nightside radiation belt. Sci China Tech Sci, 2020, 63: 2369–2374

    Article  Google Scholar 

  13. Teng S, Li W, Tao X, et al. Generation and characteristics of unusual high frequency EMIC waves. Geophys Res Lett, 2019, 46: 14230–14238

    Article  Google Scholar 

  14. Wang D, Yuan Z, Yu X, et al. Statistical characteristics of EMIC waves: Van Allen Probe observations. J Geophys Res Space Phys, 2015, 120: 4400–4408

    Article  Google Scholar 

  15. Wang Z, Yuan Z, Li M, et al. Statistical characteristics of EMIC wave-driven relativistic electron precipitation with observations of POES satellites: Revisit. J Geophys Res Space Phys, 2014, 119: 5509–5519

    Article  Google Scholar 

  16. Erlandson R E, Ukhorskiy A J. Observations of electromagnetic ion cyclotron waves during geomagnetic storms: Wave occurrence and pitch angle scattering. J Geophys Res, 2001, 106: 3883–3895

    Article  Google Scholar 

  17. Wang D, Yuan Z, Yu X, et al. Geomagnetic storms and EMIC waves: Van Allen Probe observations. J Geophys Res Space Phys, 2016, 121: 6444–6457

    Article  Google Scholar 

  18. Jordanova V K, Farrugia C J, Thorne R M, et al. Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997, storm. J Geophys Res, 2001, 106: 7–22

    Article  Google Scholar 

  19. Xiao F, Chen L, He Y, et al. Modeling for precipitation loss of ring current protons by electromagnetic ion cyclotron waves. J Atmos Sol-Terrestrial Phys, 2011, 73: 106–111

    Article  Google Scholar 

  20. Xiao F, Yang C, Zhou Q, et al. Nonstorm time scattering of ring current protons by electromagnetic ion cyclotron waves. J Geophys Res, 2012, 117: A08204

    Google Scholar 

  21. Summers D. Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere. J Geophys Res, 2005, 110: A08213

    Google Scholar 

  22. Li W, Shprits Y Y, Thorne R M. Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms. J Geophys Res, 2007, 112: A10220

    Google Scholar 

  23. He H Y, Chen L X, Li J F. Geophysics, astronomy, and astrophysics: Characteristics of wave particle interaction in a hydrogen plasma. Chin Phys Lett, 2008, 25: 3511–3514

    Article  Google Scholar 

  24. Zhu H, Su Z, Xiao F, et al. Nonlinear interaction between ring current protons and electromagnetic ion cyclotron waves. J Geophys Res, 2012, 117: A12217

    Google Scholar 

  25. Su Z, Zhu H, Xiao F, et al. Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and terrestrial ring current ions. Phys Plasmas, 2014, 21: 052310

    Article  Google Scholar 

  26. Yahnin A G, Yahnina T A. Energetic proton precipitation related to ion cyclotron waves. J Atmos Sol-Terrestrial Phys, 2007, 69: 1690–1706

    Article  Google Scholar 

  27. Usanova M E, Mann I R, Kale Z C, et al. Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation. J Geophys Res, 2010, 115: A07208

    Google Scholar 

  28. Engebretson M J, Posch J L, Wygant J R, et al. Van Allen probes, NOAA, GOES, and ground observations of an intense EMIC wave event extending over 12 h in magnetic local time. J Geophys Res Space Phys, 2015, 120: 5465–5488

    Article  Google Scholar 

  29. Ni B, Cao X, Zou Z, et al. Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales. J Geophys Res Space Phys, 2015, 120: 7357–7373

    Article  Google Scholar 

  30. He F, Cao X, Ni B, et al. Combined scattering loss of radiation belt relativistic electrons by simultaneous three-band EMIC waves: A case study. J Geophys Res Space Phys, 2016, 121: 4446–4451

    Article  Google Scholar 

  31. Wang B, Su Z, Zhang Y, et al. Nonlinear Landau resonant scattering of near equatorially mirroring radiation belt electrons by oblique EMIC waves. Geophys Res Lett, 2016, 43: 3628–3636

    Article  Google Scholar 

  32. Sandanger M, Søraas F, Aarsnes K, et al. Loss of relativistic electrons: Evidence for pitch angle scattering by electromagnetic ion cyclotron waves excited by unstable ring current protons. J Geophys Res, 2007, 112: A12213

    Google Scholar 

  33. Yuan Z, Liu K, Yu X, et al. Precipitation of radiation belt electrons by EMIC waves with conjugated observations of NOAA and Van Allen Satellites. Geophys Res Lett, 2018, 45: 12,694

    Article  Google Scholar 

  34. Wang D D, Yuan Z G, Deng X H, et al. Compression-related EMIC waves drive relativistic electron precipitation. Sci China Tech Sci, 2014, 57: 2418–2425

    Article  Google Scholar 

  35. Mauk B H, Fox N J, Kanekal S G, et al. Science objectives and rationale for the radiation belt storm probes mission. Space Sci Rev, 2013, 179: 3–27

    Article  Google Scholar 

  36. Stratton J M, Harvey R J, Heyler G A. Mission overview for the radiation belt storm probes mission. Space Sci Rev, 2013, 179: 29–57

    Article  Google Scholar 

  37. Evans D S, Greer M S. Polar Orbiting Environmental Satellite Space Environment Monitor-2: Instrument Descriptions and Archive Data Documentation. NOAA Technical Memorandum OAR SEC-93. Boulder, 2004

  38. Mitchell D G, Lanzerotti L J, Kim C K, et al. Radiation belt storm probes ion composition experiment (RBSPICE). Space Sci Rev, 2013, 179: 263–308

    Article  Google Scholar 

  39. Funsten H O, Skoug R M, Guthrie A A, et al. Helium, oxygen, proton, and electron (HOPE) mass spectrometer for the radiation belt storm probes mission. Space Sci Rev, 2013, 179: 423–484

    Article  Google Scholar 

  40. Spence H E, Reeves G D, Baker D N, et al. Science goals and overview of the radiation belt storm probes (RBSP) energetic particle, composition, and thermal plasma (ECT) suite on NASA’s Van Allen Probes mission. Space Sci Rev, 2013, 179: 311–336

    Article  Google Scholar 

  41. Kletzing C A, Kurth W S, Acuna M, et al. The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci Rev, 2013, 179: 127–181

    Article  Google Scholar 

  42. Davidson R C, Ogden J M. Electromagnetic ion cyclotron instability driven by ion energy anisotropy in high-beta plasmas. Phys Fluids, 1975, 18: 1045–1050

    Article  Google Scholar 

  43. Chen L, Thorne R M, Horne R B. Simulation of EMIC wave excitation in a model magnetosphere including structured high-density plumes. J Geophys Res, 2009, 114: A07221

    Google Scholar 

  44. Summers D. Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J Geophys Res, 2003, 108: 1143

    Article  Google Scholar 

  45. He H Y, Chen L X, Tian T, et al. Astrophysics and space plasma: Gyroresonance between electromagnetic ion cyclotron waves and particles in a multi-ion plasma. Plasma Sci Technol, 2009, 11: 539–543

    Article  Google Scholar 

  46. Lyons L R, Thorne R M. Parasitic pitch angle diffusion of radiation belt particles by ion cyclotron waves. J Geophys Res, 1972, 77: 5608–5616

    Article  Google Scholar 

  47. Horne R B, Thorne R M, Glauert S A, et al. Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophys Res Lett, 2007, 34: L17107

    Article  Google Scholar 

  48. Su Z, Gao Z, Zhu H, et al. Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013. J Geophys Res Space Phys, 2016, 121: 6400–6416

    Article  Google Scholar 

  49. Gao Z, Su Z, Zhu H, et al. Intense low-frequency chorus waves observed by Van Allen Probes: Fine structures and potential effect on radiation belt electrons. Geophys Res Lett, 2016, 43: 967–977

    Article  Google Scholar 

  50. Yang C, Su Z, Xiao F, et al. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus. Geophys Res Lett, 2016, 43: 8339–8347

    Article  Google Scholar 

  51. Yang C, Xiao F, He Y, et al. Storm time evolution of outer radiation belt relativistic electrons by a nearly continuous distribution of chorus. Geophys Res Lett, 2018, 45: 2159–2167

    Article  Google Scholar 

  52. Kurth W S, De Pascuale S, Faden J B, et al. Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes. J Geophys Res Space Phys, 2015, 120: 904–914

    Article  Google Scholar 

  53. Shprits Y Y, Chen L, Thorne R M. Simulations of pitch angle scattering of relativistic electrons with MLT-dependent diffusion coefficients. J Geophys Res, 2009, 114: A03219

    Google Scholar 

  54. Su Z, Zheng H, Wang S. Evolution of electron pitch angle distribution due to interactions with whistler mode chorus following substorm injections. J Geophys Res, 2009, 114: A08202

    Google Scholar 

  55. Su Z P, Zheng H N. Resonant scattering of relativistic outer zone electrons by plasmaspheric plume electromagnetic ion cyclotron waves. Chin Phys Lett, 2009, 26: 129401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to FuLiang Xiao or ZhaoGuo He.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41774194, 41974212 and 42074198) and the Specialized Research Fund for State Key Laboratories. The authors acknowledge the University of Iowa as the source for the EMFISIS data. We acknowledge Herb Funsten, Ruth Skoug, Brian Larsen and Geoff Reeves for the use of HOPE data. We thank NOAA for the access to the POES data. Data can be found at the following websites: http://emfisis.physics.uiowa.edu/Flight/ (EMFISIS), http://www.RBSP-ect.lanl.gov/ (ECT) and https://www.ngdc.noaa.gov/stp/satellite/poes/ (NOAA).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Wang, Z., Xiao, F. et al. Correlated observations linking loss of energetic protons to EMIC waves. Sci. China Technol. Sci. 65, 131–138 (2022). https://doi.org/10.1007/s11431-021-1882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-021-1882-x

Keywords

Navigation