Skip to main content
Log in

Compression-related EMIC waves drive relativistic electron precipitation

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

With coordinated observations of the NOAA 15 satellite and OUL magnetometer station in Finland, we report that the electromagnetic ion cyclotron (EMIC) waves which were stimulated by the compression of the magnetosphere drive relativistic electron precipitation in geoquiescence on 1 Jan 2007. After an enhancement of solar wind dynamic pressure (SWDP), a dayside Pc1 pulsation was observed by the OUL station. Such a Pc1 pulsation is caused by an EMIC wave which propagates from the generation source to lower altitudes. Simultaneously, the NOAA 15 satellite registered an enhancement of precipitating electron count rates with energies >3 MeV within the anisotropic zone of protons. This phenomenon is coincident with the quasi-linear theoretical calculation presented in this paper. Our observations suggest that after a positive impulse of solar wind, the compression-related EMIC waves can drive relativistic electrons precipitation and play a pivotal role in the dynamic of radiation belts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker D N, Belian R, Higbie P R, et al. Deep dielectric charging effects due to high energy electrons in the Earth’s outer magnetosphere. J Electrost, 1987, 20: 3–19

    Article  Google Scholar 

  2. Reeves G D, McAdams K L, Friedel R H W, et al. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys Res Lett, 2003, 30: 1529

    Article  Google Scholar 

  3. Zong Q G, Zhou X Z, Wang Y F, et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res, 2009, 114: A10204

    Article  Google Scholar 

  4. Summers D, Ma C, Mukai T. Competition between acceleration and loss mechanisms of relativistic electrons during geomagnetic storms. J Geophys Res, 2004, 109: A04221

    Google Scholar 

  5. Miyoshi Y, Sakaguchi K, Shiokawa K, et al. Precipitation of radiation belt electrons by EMIC waves, observed from ground and space. Geophys Res Lett, 2008, 35: L23101

    Article  Google Scholar 

  6. Su Z P, Xiao F L, Zheng H N, et al. CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event. Geophys Res Lett, 2011, 38: L06106

    Article  Google Scholar 

  7. Yuan Z, Li M, Xiong Y, et al. Simultaneous observations of precipitating radiation belt electrons and ring current ions associated with the plasmaspheric plume. J Geophys Res Space Physics, 2013, 118: 4391–4399

    Article  Google Scholar 

  8. Bortnik J, Thorne R M. The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons. J Atmos Sol Terr Phys, 2007, 69: 378–386

    Article  Google Scholar 

  9. Fu H S, Cao J B, Mozer F S, et al. Chorus intensification in response to interplanetary shock. J Geophys Res, 2012, 117: A01203

    Google Scholar 

  10. Fu H S, Cao J B, Zong Q G, et al. The role of electrons during chorus intensification: Energy source and energy loss. J Atmos Sol Terr Phys, 2012, 80: 37–47

    Article  Google Scholar 

  11. Summers D, Ni B, Meredith N P. Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and the electromagnetic ion cyclotron waves. J Geophys Res, 2007, 112: A04207

    Google Scholar 

  12. Thorne R M. Radiation belt dynamics: The importance of wave-particle interactions. Geophys Res Lett, 2010, 37: L22107

    Article  Google Scholar 

  13. Hayosh M, Santolík O, Parrot M. Location and size of the global source region of whistler mode chorus. J Geophys Res, 2010, 115: A00F06

    Google Scholar 

  14. Bortnik J, Thorne R M, Meredith N P. The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature, 2008, 452: 62–66

    Article  Google Scholar 

  15. Yuan Z, Xiong Y, Pang Y, et al. Wave-particle interaction in a plasmaspheric plume observed by a Cluster satellite. J Geophys Res, 2012, 117: A03205

    Google Scholar 

  16. Fu H S, Cao J B, Yang B, et al. Electron loss and acceleration during storm time: The contribution of wave-particle interaction, radial diffusion, and transport processes. J Geophys Res, 2011, 116: A10210

    Article  Google Scholar 

  17. Xu W Y, Du A M. Energy budget of the magnetosphere-ionosphere system in solar Cycle 23. Sci China Tech Sci, 2012, 55: 1184–1188

    Article  Google Scholar 

  18. Yuan Z, Zhao L, Xiong Y, et al. Energetic particle precipitation and the influence on the sub-ionosphere in the SED plume during a super geomagnetic storm. J Geophys Res, 2011, 116: A09317

    Google Scholar 

  19. Lyons L R, Thorne R M. Equilibrium structure of radiation belt electrons. J Geophys Res, 77, 1973: 5608–5617

    Article  Google Scholar 

  20. Summers D, Thorne R M. Relativistic electron pitch angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J Geophys Res, 2003, 108: 1143

    Article  Google Scholar 

  21. Hu Y, Denton R E, Johnson J R. Two-dimensional hybrid code simulation of electromagnetic ion cyclotron waves of multi-ion plasmas in a dipole magnetic field. J Geophys Res, 2010, 115: A09218

    Google Scholar 

  22. Johnson J R, Cheng C Z. Can ion cyclotron waves propagate to the ground? Geophys Res Lett, 1999, 26: 671–674

    Article  Google Scholar 

  23. Engebretson M J, Lessard M R, Bortnik J, et al. Pc1-Pc2 waves and energetic particle precipitation duringand after magnetic storms: Su perposed epoch analysis and case studies. J Geophys Res, 2008, 113: A01211

    Google Scholar 

  24. Yuan Z, Xiong Y, Wang D, et al. Characteristics of precipitating energetic ions/electrons associated with the wave-particle interaction in the plasmaspheric plume. J Geophys Res, 2012, 117: A08324

    Google Scholar 

  25. Liu Y H, Fraser B J, Menk F W. EMIC waves observed by Cluster near the plasmapause. J Geophys Res Space Physics, 2013, 118: 5603–5615

    Article  Google Scholar 

  26. Fraser B J, Nguyen T S. Is the plasmapause a preferred source region ofelectromagnetic ion cyclotron waves in the magnetosphere? J Atmos Terr Phys, 2011, 63, 1225–1247

    Article  Google Scholar 

  27. Horne R B, Thorne R M. On the preferred source location for the convective amplification of ion cyclotron waves. J Geophys Res, 1993, 98: 9233–9247

    Article  Google Scholar 

  28. Horne R B, Thorne R M. Convective instabilities of electromagnetic ion cyclotron waves in the outer magnetosphere. J Geophys Res, 1994, 99: 17259–17273

    Article  Google Scholar 

  29. Yuan Z, Deng X, Lin X, et al. The link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites. Geophys Res Lett, 2010, 37: L07108

    Google Scholar 

  30. Yuan Z, Xiong Y, Huang S, et al. Cold electron heating by EMIC waves in the plasmaspheric plume with observations of the Cluster satellite. Geophys Res Lett, 2014, 41: 1830–1837

    Article  Google Scholar 

  31. Anderson B J, Hamilton D J. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions. J Geophys Res, 1993, 98: 369–11382

    Google Scholar 

  32. Usanova M E, Mann I R, Rae I J, et al. Multipoint observations of magnetospheric compression-related EMIC Pc1 waves by THEMIS and CARISMA. Geophys Res Lett, 2008, 35: L17S25

    Article  Google Scholar 

  33. Usanova M E, Mann I R, Kale Z C, et al. Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation. J Geophys Res, 2010, 115: A07208

    Google Scholar 

  34. McCollough J P, Elkington S R, Baker D N. The role of Shabansky orbits in compression-related electromagnetic ion cyclotron wave growth. J Geophys Res, 2012, 117: A01208

    Google Scholar 

  35. Yahnin A G, Yahnina T A. Energetic proton precipitation related to ion-cyclotron waves. J Atmos Terr Phys, 2007, 69: 1690–1706

    Article  Google Scholar 

  36. Zhu H, Su Z P, Xiao F L, et al. Nonlinear interaction between ring current protons and electromagnetic ion cyclotron waves. J Geophys Res, 2012, 117: A12217

    Google Scholar 

  37. Lyons L R, Thorne R M, Kennel C F. Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J Geophys Res, 1972, 77: 3455–3474

    Article  Google Scholar 

  38. Su Z P, Zhu H, Xiao F L, et al. Bounce-averaged advection and diffusion coefficients for monochromatic electromagnetic ion cyclotron wave: Comparison between test-particle and quasi-linear models. J Geophys Res, 2012, 117: A09222

    Google Scholar 

  39. Su Z P, Zhu H, Xiao F L, et al. Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and radiation belt relativistic electrons. J Geophys Res, 2013, 118: 3188–3202

    Article  Google Scholar 

  40. Millan R M, Lin R P, Smith D M, et al. X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer. Geophys Res Lett, 2002, 29: 2194

    Article  Google Scholar 

  41. Sandanger M, Søraas F, Aarsnes K, et al. Loss of relativistic electrons: Evidence for pitch angle scattering by electromagnetic ion cyclotron waves excited by unstable ring current protons. J Geophys Res, 2007, 112: A12213

    Article  Google Scholar 

  42. Rodger C J, Raita T, Clilverd M A, et al. Observations of relativistic electron precipitation from the radiation belts driven by EMIC waves. Geophys Res Lett, 2008, 35: L16106

    Article  Google Scholar 

  43. Carson B R, Rodger C J, Clilverd M A. POES satellite observations of EMIC-wave driven relativistic electron precipitation during 1998–2010. J Geophys Res Space Physics, 2012, 118: 232–243

    Article  Google Scholar 

  44. Evans D S, Greer M S. Polar Orbiting Environmental Satellite Space Environment monitor-2 Instrument Descriptions and Archive Data Documentation. Boulder, Colorado: Space Environ. Lab.. 2004

    Google Scholar 

  45. Tsyganenko N A, Sitnov M I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J Geophys Res, 2005, 110: A03208

    Google Scholar 

  46. Hayakawa M, Shimakura S, Kobayashi T, et al. A study of polarization of irregular pulsations of diminishing period and their generation mechanism. Planet Space Sci, 1992, 40: 1081–1091

    Article  Google Scholar 

  47. McCollough J P, Elkington S R, Baker D N. Modeling EMIC wave growth during the compression event of 29 June 2007. Geophys Res Lett, 2009, 36: L18108

    Article  Google Scholar 

  48. Carpenter D L, Anderson R R. An ISEE/whistler model of equatorial electron density in the magnetosphere. J Geophys Res, 1992, 97: 1097–1198

    Article  Google Scholar 

  49. Sheeley B W, Moldwin M B, Rassoul H K, et al. An empirical plasmasphere and trough density model: CRRES observations. J Geophys Res, 2011, 106: 25631

    Article  Google Scholar 

  50. Grew R S, Menk F W, Clilverd M A, et al. Mass and electron densities in the inner magnetosphere during a prolonged disturbed interval. Geophys Res Lett, 2007, 34: L02108

    Article  Google Scholar 

  51. Ludlow G R, Cornilleau-Wehrlin N, Hughes W J. Simultaneous observation of a Pc1 pulsation by the air force geophysics laboratory magnetometer network and GEOS 1. J Geophys Res, 1989, 94: 6633–6642

    Article  Google Scholar 

  52. Summers D. Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere. J Geophys Res, 2005, 110: A08213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiGang Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Yuan, Z., Deng, X. et al. Compression-related EMIC waves drive relativistic electron precipitation. Sci. China Technol. Sci. 57, 2418–2425 (2014). https://doi.org/10.1007/s11431-014-5701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5701-3

Keywords

Navigation