Skip to main content
Log in

Quasi-periodic pulsations with double periods observed in Lyα emission during solar flares

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Quasi-periodic pulsations (QPPs) are very common oscillation features during solar flares, which have been observed in almost the entire wavelengths. However, the flare-related QPPs with double periods in the Lyα emission, particularly within a period ratio of about 2, were rarely detected. In this paper, we report the QPPs with double periods in the full-disk Lyα emission during the impulsive phase of four solar flares, i.e., SOL2016-Feb-12, SOL2014-Oct-24, SOL2014-Jun-10, and SOL2012-Nov-21. The full-disk Lyα fluxes were recorded by the extreme-ultraviolet sensor on board the Geostationary Operational Environmental Satellite. Then, the quasi-periods are estimated by the Markov chain Monte Carlo (MCMC) sampling techniques. Finally, the double periods of around 3 and 1.5 min are detected in Lyα emissions, and their period ratio is roughly equal to 2. The 3-min QPP could also be detected in the local light curves measured by the Atmospheric Imaging Assembly at wavelengths of 304 and 1600 Å. Our observations suggest that the double periodic QPPs could be regarded as the fundamental and harmonic modes of acoustic waves, which should be helpful to understand magnetohydrodynamic waves in the solar chromosphere. However, we cannot rule out that the double periods are each caused by a different generation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakariakov V M, Melnikov V F. Quasi-periodic pulsations in solar flares. Space Sci Rev, 2009, 119: 119–151

    Article  Google Scholar 

  2. Melnikov V F, Reznikova V E, Shibasaki K, et al. Spatially resolved microwave pulsations of a flare loop. Astron Astrophys, 2005, 439: 727–736

    Article  Google Scholar 

  3. Nakariakov V M, Foullon C, Myagkova I N, et al. Quasi-periodic pulsations in the gamma-ray emission of a solar flare. Astrophys J, 2010, 708: L47–L51

    Article  Google Scholar 

  4. Shen Y D, Liu Y, Su J T, et al. Observations of a quasi-periodic, fast-propagating magnetosonic wave in multiple wavelengths and its interaction with other magnetic structures. Sol Phys, 2013, 288: 585–602

    Article  Google Scholar 

  5. Shen Y D, Liu Y, Song T, et al. A quasi-periodic fast-propagating magnetosonic wave associated with the eruption of a magnetic flux rope. Astrophys J, 2018, 853: 1

    Article  Google Scholar 

  6. Ning Z J. Imaging observations of X-ray quasi-periodic oscillations at 3–6 keV in the 26 December 2002 solar flare. Sol Phys, 2014, 289: 1239–1256

    Article  Google Scholar 

  7. Kolotkov D Y, Nakariakov V M, Kupriyanova E G, et al. Multi-mode quasi-periodic pulsations in a solar flare. Astron Astrophys, 2015, 574: A53

    Article  Google Scholar 

  8. Cho I H, Cho K S, Nakariakov V M, et al. Comparison of damped oscillations in solar and stellar X-ray flares. Astrophys J, 2016, 830: 110

    Article  Google Scholar 

  9. Dennis B R, Tolbert, A K, Inglis A. et al. Detection and interpretation of long-lived X-ray quasi-periodic pulsations in the X-class solar flare on 2013 May 14. Astrophys J, 2017, 836: 84

    Article  Google Scholar 

  10. Li L, Zhang J, Peter H, et al. Quasi-periodic fast propagating magnetoacoustic waves during the magnetic reconnection between solar coronal loops. Astrophys J, 2018, 868: L33

    Article  Google Scholar 

  11. Li D, Kolotkov D Y, Nakariakov V. M, et al. Quasi-periodic pulsations of gamma-ray emissions from a solar flare on 2017 September 6. Astrophys J, 2020, 888: 53

    Article  Google Scholar 

  12. Karlický M, Chen B, Gary D E, et al. Drifting pulsation structure at the very beginning of the 2017 September 10 limb flare. Astrophys J, 2020, 889: 72

    Article  Google Scholar 

  13. Tan B, Yan Y, Tan C, et al. The microwave pulsations and the tearing modes in the current-carrying flare loops. Astrophys J, 2007, 671: 964–972

    Article  Google Scholar 

  14. Li D, Zhang Q M, Huang Y, et al. Quasi-periodic pulsations with periods that change depending on whether the pulsations have thermal or nonthermal components Astron Astropys, 2017, 597: L4

    Article  Google Scholar 

  15. Yu S, Chen B. Possible detection of subsecond-period propagating magnetohydrodynamics waves in post-reconnection magnetic loops during a two-ribbon solar flare. Astrophys J, 2019, 872: 71

    Article  Google Scholar 

  16. Zimovets I V, Struminsky A B. Observations of double-periodic X-ray emission in interacting systems of solar flare loops. Sol Phys, 2010, 263: 163–174

    Article  Google Scholar 

  17. Li D, Zhang Q M. Quasi-periodic pulsations with multiple periods in hard X-ray emission. Mon Not R Astron Soc-Lett, 2017, 471: L6–L10

    Article  Google Scholar 

  18. Hayes L A, Gallagher P T, Dennis B R, et al. Persistent quasi-periodic pulsations during a large X-class solar flare. Astrophys J, 2019, 875: 33

    Article  Google Scholar 

  19. Nakariakov V M, Kolotkov D Y. Magnetohydrodynamic waves in the solar corona. Ann Rev Astron Astrophys, 2020, 58: 441–481

    Article  Google Scholar 

  20. Tian H, Young P R, Reeves K K, et al. Global Sausage oscillation of solar flare loops detected by the interface region imaging spectrograph. Astrophys J, 2016, 823: L16

    Article  Google Scholar 

  21. Andries J, Arregui I, Goossens M. Determination of the coronal density stratification from the observation of harmonic coronal loop oscillations. Astrophys J, 2005, 624: L57–L60

    Article  Google Scholar 

  22. Li B, Habbal S R, Chen Y. The period ratio for standing kink and sausage modes in solar structures with siphon flow. I. Magnetized slabs. Astrophys J, 2013, 767: 169

    Article  Google Scholar 

  23. Wang T, Ofman L, Sun X, et al. Evidence of thermal conduction suppression in a solar flaring loop by coronal seismology of slow-mode waves. Astrophys J, 2015, 811: L13

    Article  Google Scholar 

  24. Yuan D, Doorsselaere T V. Forward modeling of standing kink modes in coronal loops. II. Applications. Astrophys J Suppl Ser, 2016, 223: 24

    Article  Google Scholar 

  25. Kliem B, Karlický M, Benz A O. Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron Astropys, 2000, 360: 715–728

    Google Scholar 

  26. Chen P F, Priest E R. Transition-region explosive events: Reconnection modulated by p-mode waves. Sol Phys, 2006, 238: 313–327

    Article  Google Scholar 

  27. Li D, Ning Z J, Zhang Q M. Imaging and spectral observations of quasi-periodic pulsations in a solar flare. Astrophys J, 2015, 807: 72

    Article  Google Scholar 

  28. Tan B, Yu Z, Huang J, et al. Very long-period pulsations before the onset of solar flares. Astrophys J, 2016, 833: 206

    Article  Google Scholar 

  29. Chen X, Yan Y, Tan B, et al. Quasi-periodic pulsations before and during a solar flare in AR 12242. Astrophys J, 2019, 878: 78

    Article  Google Scholar 

  30. Li D, Li Y, Lu L, et al. Observations of a quasi-periodic pulsation in the coronal loop and microwave flux during a solar preflare phase. Astron Astropys, 2020, 893: L17

    Google Scholar 

  31. Li D, Feng S, Su W, et al. Preflare very long-periodic pulsations observed in Hα emission before the onset of a solar flare. Astron Astrophys, 2020, 639: L5

    Article  Google Scholar 

  32. McLaughlin J A, Nakariakov V M, Dominique M, et al. Modelling quasi-periodic pulsations in solar and stellar flares. Space Sci Rev, 2018, 214: 45

    Article  Google Scholar 

  33. Woods T N, Eparvier F G, Fontenla J, et al. Solar irradiance variability during the October 2003 solar storm period. Geophys Res Lett, 2004, 31: L10802

    Article  Google Scholar 

  34. Milligan R O, Hudson H S, Chamberlin P C, et al. Lyman-alpha variability during solar flares over solar Cycle 24 using GOES-15/EUVS-E. Space Weather, 2020, 18: e02331

    Article  Google Scholar 

  35. Nusinov A A, Kazachevskaya T V, Kuznetsov S N, et al. Ultraviolet, hard X-ray, and gamma-ray emission of solar flares recorded by VUSS-L and SONG instruments in 2001 2003. Sol Syst Res, 2006, 40: 282–285

    Article  Google Scholar 

  36. Jing Z C, Pan W Q, Yang Y K, et al. The Lyman-alpha emission in solar flares. I. A statistical study on its relationship with the 1–8 Å Soft X-ray Emission. arXiv: 2009.10358

  37. da Costa F R, Fletcher L, Labrosse N, et al. Observations of a solar flare and filament eruption in Lyman α and X-rays. Astron Astrophys, 2009, 507: 1005–1014

    Article  Google Scholar 

  38. Kretzschmar M, Dominique M, Dammasch I E. Sun-as-a-star observation of flares in Lyman a by the PROBA2/LYRA radiometer. Sol Phys, 2013, 286: 221–239

    Article  Google Scholar 

  39. Milligan R O, Fleck B, Ireland J, et al. Detection of three-minute oscillations in full-disk Lyα emission during a solar flare. Astrophys J, 2017, 848: L8

    Article  Google Scholar 

  40. Van Doorsselaere T, De Groof A, Zender J, et al. LYRA observations of two oscillation modes in a single flare. Astrophys J, 2011, 740: 90

    Article  Google Scholar 

  41. Li D, Lu L, Ning Z, et al. Quasi-periodic pulsation detected in Lyα emission during solar flares. Astrophys J, 2020, 893: 7

    Article  Google Scholar 

  42. Viereck R, Hanser F, Wise J, et al. Solar extreme ultraviolet irradiance observations from GOES: design characteristics and initial performance. Proc SPIE, 2007, 6689: 66890K

    Article  Google Scholar 

  43. Hanser F A, Sellers F B. Design and calibration of the GOES-8 solar X-ray sensor: The XRS. Proc SPIE, 1996, 2812: 344–352

    Article  Google Scholar 

  44. Lemen J R, Title A M, Akin D J, et al. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol Phys, 2012, 275: 17–40

    Article  Google Scholar 

  45. Lin R P, Dennis B R, Hurford G J, et al. The reuven ramaty high-energy solar spectroscopic imager (RHESSI). Sol Phys, 2002, 210: 3C32

    Article  Google Scholar 

  46. Ning Z, Cao W. Investigation of chromospheric evaporation in a neupert-type solar flare. Astrophys J, 2010, 717: 1232–1242

    Article  Google Scholar 

  47. Su Y, Dennis B R, Holman G D, et al. Observations of a two-stage solar eruptive event (SEE): Evidence for secondary heating. Astrophys J, 2012, 746: L5

    Article  Google Scholar 

  48. Liang B, Meng Y, Feng S, et al. Estimating red noise in quasi-periodic signals with MCMC-based Bayesian. Astrophys Space Sci, 2020, 365: 40

    Article  Google Scholar 

  49. Vaughan S. A simple test for periodic signals in red noise. Astron Astrophys, 2005, 431: 391–403

    Article  Google Scholar 

  50. Ning Z. One-minute quasi-periodic pulsations seen in a solar flare. Sol Phys, 2017, 292: 11

    Article  Google Scholar 

  51. Yuan D, Feng S, Li D, et al. A compact source for quasi-periodic pulsation in an m-class solar flare. Astrophys J, 2019, 886: L25

    Article  Google Scholar 

  52. Sharma S. Markov chain Monte Carlo Methods for Bayesian data analysis in astronomy. AnnuRev AstronAstrophys, 2017, 55: 213–259

    Article  Google Scholar 

  53. Torrence C, Compo G P. A practical guide to wavelet analysis. Bull Amer Meteor Soc, 1998, 79: 61–78

    Article  Google Scholar 

  54. Kupriyanova E G, Melnikov V F, Nakariakov V M, et al. Types of microwave quasi-periodic pulsations in single flaring loops. Sol Phys, 2010, 267: 329–342

    Article  Google Scholar 

  55. Gruber D, Lachowicz P, Bissaldi E, et al. Quasi-periodic pulsations in solar flares: New clues from the Fermi Gamma-ray burst monitor. Astron Astrophys, 2011, 533: A61

    Article  Google Scholar 

  56. Dominique M, Zhukov A N, Dolla L, et al. Detection of quasi-periodic pulsations in solar EUV time series. Sol Phys, 2018, 293: 61

    Article  Google Scholar 

  57. Srivastava A K, Zaqarashvili T V, Uddin W, et al. Observation of multiple sausage oscillations in cool post-flare loop. Mon Not R Astron Soc, 2008, 388: 1899–1903

    Article  Google Scholar 

  58. Jess D B, Morton R J, Verth G, et al. Multiwavelength studies of MHD waves in the solar chromosphere. An overview of recent results. Space Sci Rev, 2015, 190: 103–161

    Article  Google Scholar 

  59. Li D, Yuan D, Su Y N, et al. Non-damping oscillations at flaring loops. Astron Astrophys, 2018, 617: A86

    Article  Google Scholar 

  60. Priyadarshi S, Zhang Q H, Wang Y. An empirical L-band scintillation model for a mid-latitude station, Weihai, China during the low solar activity period. Sci China Tech Sci, 2019, 62: 1182–1190

    Article  Google Scholar 

  61. Wang B, Chen Y, Hu Q, et al. A method of forced extrapolation of the global magnetic field in the solar corona. Sci China Tech Sci, 2020, 63: 234–242

    Article  Google Scholar 

  62. Yang Z H, Tian H, Tomczyk S, et al. Mapping the magnetic field in the solar corona through magnetoseismology. Sci China Tech Sci, 2020, 63: 2357–2368

    Article  Google Scholar 

  63. Li H, Chen B, Feng L, et al. The Lyman-alpha solar telescope (LST) for the ASO-S mission—I. Scientific objectives and overview. Res Astron Astrophys, 2019, 19: 158

    Article  Google Scholar 

  64. Feng L, Li H, Chen B, et al. The Lyman-alpha solar telescope (LST) for the ASO-S mission—III. Data and potential diagnostics. Res Astron Astrophys, 2019, 19: 162

    Article  Google Scholar 

  65. Gan W Q, Zhu C, Deng Y Y, et al. Advanced space-based solar observatory (ASO-S): An overview. Res Astron Astrophys, 2019, 19: 156

    Article  Google Scholar 

  66. Huang Y, Li H, Gan W Q, et al. The science operations and data center (SODC) of the ASO-S mission. Res Astron Astrophys, 2019, 19: 164

    Article  Google Scholar 

  67. Schühle U, Halain J P, Meining S, et al. The Lyman-alpha telescope of the extreme ultraviolet imager on Solar Orbiter. Proc SPIE, 2011, 8148: 81480K

    Article  Google Scholar 

  68. Müller D, St. Cyr O C, Zouganelis I, et al. The solar orbiter mission. Science overview. Astron Astrophys, 2020, 642: A1

    Article  Google Scholar 

  69. Rochus P, Auchére F, Berghmans D, et al. The solar orbiter EUI instrument: The extreme ultraviolet imager. Astron Astrophys, 2020, 642: A8

    Article  Google Scholar 

  70. Li D, Yang X, Bai X Y, et al. Doppler shift oscillations of a sunspot detected by CYRA and IRIS. Astron Astrophys, 2020, 642: A231

    Article  Google Scholar 

  71. Sych R, Nakariakov V M, Karlicky M, et al. Relationship between wave processes in sunspots and quasi-periodic pulsations in active region flares. Astron Astrophys, 2009, 505: 791–799

    Article  Google Scholar 

  72. Yuan D, Sych R, Reznikova V E, et al. Multi-height observations of magnetoacoustic cut-off frequency in a sunspot atmosphere. Astron Astrophys, 2014, 561: A19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11973092, 12073081, 11873095, 11790302 and 11729301), the Strategic Pioneer Program on Space Science of Chinese Academy of Sciences (Grant Nos. XDA15052200 and XDA15320301), and the CAS Key Laboratory of Solar Activity (Grant No. KLSA202003). The Laboratory No. 2010DP173032.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D. Quasi-periodic pulsations with double periods observed in Lyα emission during solar flares. Sci. China Technol. Sci. 65, 139–146 (2022). https://doi.org/10.1007/s11431-020-1771-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1771-7

Keywords

Navigation