Skip to main content
Log in

A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Recently, with the rapid development of aerospace technology, an increasing number of spacecraft is being launched into space. Additionally, the demands for on-orbit servicing (OOS) missions are rapidly increasing. Space robotics is one of the most promising approaches for various OOS missions; thus, research on space robotics technologies for OOS has attracted increased attention from space agencies and universities worldwide. In this paper, we review the structures, ground verification, and on-orbit kinematics calibration technologies of space robotic systems for OOS. First, we systematically summarize the development of space robotic systems and OOS programs based on space robotics. Then, according to the structures and applications, these systems are divided into three categories: large space manipulators, humanoid space robots, and small space manipulators. According to the capture mechanisms adopted, the end-effectors are systematically analyzed. Furthermore, the ground verification facilities used to simulate a microgravity environment are summarized and compared. Additionally, the on-orbit kinematics calibration technologies are discussed and analyzed compared with the kinematics calibration technologies of industrial manipulators with regard to four aspects. Finally, the development trends of the structures, verification, and calibration technologies are discussed to extend this review work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin D, Sullivan B. A survey of serviceable spacecraft failures. In: AIAA Space 2001 Conference and Exposition. Albuquerque, 2001. 4540

  2. Gefke G, Janas A, Chiei R, et al. Advances in robotic servicing technology development. In: AIAA Space 2015 Conference and Exposition. Pasadena, 2015. 4426

  3. Li W J, Cheng D Y, Liu X G, et al. On-orbit service (OOS) of spacecraft: A review of engineering developments. Prog Aerospace Sci, 2019, 108: 32–120

    Google Scholar 

  4. Pellegrino J F, Roberts B J. Robotic servicing technology development. In: AIAA Space 2013 Conference and Exposition. San Digeo, 2013. 5339

  5. Liu H. An overview of the space robotics progress in China. In: Proceedings of the International Symposium on Artificial Intelligence Robotics and Automation in Space. Montreal, 2014. 15–20

  6. Shan M, Guo J, Gill E. Review and comparison of active space debris capturing and removal methods. Prog Aerospace Sci, 2016, 80: 18–32

    Google Scholar 

  7. Mark C P, Kamath S. Review of active space debris removal methods. Space Policy, 2019, 47: 194–206

    Google Scholar 

  8. Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing. Prog Aerospace Sci, 2014, 68: 1–26

    Google Scholar 

  9. Bekey G A, Ambrose R, Kumar V, et al. Robotics: State of the Art and Future Challenges. London: Imperial College Press, 2008

    Google Scholar 

  10. Rembala R, Ower C. Robotic assembly and maintenance of future space stations based on the iss mission operations experience. Acta Astronaut, 2009, 65: 912–920

    Google Scholar 

  11. Kulakov F M. Some russian research on robotics. Robot Auton Syst, 1996, 18: 365–372

    Google Scholar 

  12. Sallaberger C. Canadian space robotic activities. Acta Astronaut, 1997, 41: 239–246

    Google Scholar 

  13. Yoneyama K, Shiraki K, Ono Y, et al. Japanese experiment module (JEM) program overview. J Appl Manag Entrep, 2006, 14: 4149–4159

    Google Scholar 

  14. Truong V, Greco T, Kassam I, et al. A cost effective methodology for building flight spares for robotic life extension on the international space station. Acta Astronaut, 2019, 162: 405–408

    Google Scholar 

  15. Didot F, Oort M, Kouwen J, et al. The era system: Control architecture and performances results. In: Preceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space. Montral, 2001

  16. Sun K, Liu H, Xie Z W, et al. Structure design of an end effector for the chinese space station experimental module manipulator. In: Proceedings of the 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Montrea, 2014. 1–8

  17. Dietrich A, Bussmann K, Petit F, et al. Whole-body impedance control of wheeled mobile manipulators. Auton Robot, 2016, 40: 505–517

    Google Scholar 

  18. Bluethmann W, Ambrose R, Diftler M, et al. Robonaut: A robot designed to work with humans in space. Auton Robot, 2003, 14: 179–197

    MATH  Google Scholar 

  19. Diftler M A, Mehling J S, Abdallah M E H, et al. Robonaut 2—The first humanoid robot in space. In: International Conference on Robotics and Automation. Shanghai, 2011. 2178–2183

  20. Diftler M, Ahlstrom T, Ambrose R, et al. Robonaut 2—Initial activities on-board the iss. In: IEEE Aerospace Conference Proceedings. Big Sky, 2012. 1–12

  21. Bogdanov A, Dudorov E, Permyakov A, et al. Control system of a manipulator of the anthropomorphic robot fedor. In: International Conference on Developments in eSystems Engineering (DeSE). St. Louis: IEEE, 2019. 449–453

    Google Scholar 

  22. Xie Z D, Zhao J D, Huang J B, et al. DSP/FPGA-based highly integrated flexible joint robot. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St Louis, 2009

  23. Liu H, Wu K, Meusel P, et al. Multisensory five-finger dexterous hand: The DLR/HIT hand II. In: International Conference on Intelligent Robots and Systems. Nice, 2008. 3692–3697

  24. Jing Z, Qiao L, Pan H, et al. An overview of the configuration and manipulation of soft robotics for on-orbit servicing. Sci China Inf Sci, 2017, 60: 050201

    Google Scholar 

  25. Oda M, Kibe K, Yamagata F. Ets-vii, space robot in-orbit experiment satellite. In: International Conference on Robotics and Automation. Minneapolis, 1996. 739–744

  26. Kimura S, Nagai Y, Yamamoto H, et al. Rendezvous experiments on smartsat-1. In: International Conference on Space Mission Challenges for Information Technology. Pasadena, 2006. 374–379

  27. Malaviarachchi P, Reedman T J, Allen A C M, et al. A small satellite concept for on-orbit servicing of spacecraft. In: Processdings of the 17th Annual AIAA/USU Conference on Small Satellites. Logan: AIAA, 2003

    Google Scholar 

  28. de Selding P B. Intelsat signs up for mda’s satellite refueling service. Space News, 2011. https://spacenews.com/intelsat-signs-mdas-satellite-refueling-service/

  29. Visentin G, Brown D L. Robotics for geostationary satellite servicing. Robot Auton Syst, 1998, 23: 45–51

    Google Scholar 

  30. Hirzinger G, Brunner B, Dietrich J, et al. Rotex-the first remotely controlled robot in space. In: International Conference on Robotics and Automation. San Diego, 1994. 2604–2611

  31. Freund E, Hoffmann K, Rossmann J. Application of automatic action planning for several work cells to the German ETS-VII space robotics experiments. In: International Conference on Robotics and Automation. San Francisco, 2000. 1239–1244

  32. Hirzinger G, Brunner B, Landzettel K, et al. Preparing a new generation of space robots—A survey of research at DLR. Robot Auton Syst, 1998, 23: 99–106

    Google Scholar 

  33. Hirzinger G, Landzettel K, Reintsema D, et al. Rokviss-robotics component verification on iss. In: Proceedings of the 8th International Symposium on Artifical Intelligence, Robotics and Automation in Space. Munich, 2005

  34. Hirzinger G, Landzettel K, Brunner B, et al. DLR’s robotics technologies for on-orbit servicing. Adv Robotics, 2004, 18: 139–174

    Google Scholar 

  35. Debus T, Dougherty S. Overview and performance of the front-end robotics enabling near-term demonstration (frend) robotic arm. In: AIAA Infotech@Aerospace Conference 2009. Seatle, 2009. 1870

  36. Reintsema D, Sommer B, Wolf T, et al. Deos-the in-flight technology demonstration of German’s robotics approach to dispose malfunctioned satellites. In: Processdings of the 11th Symposium on Advanced Space Technologies in Robotics and Automation. Noordwijk, 2011

  37. Lange C, Witte L, Rosta R, et al. A seismic-network mission proposal as an example for modular robotic lunar exploration missions. Acta Astronaut, 2017, 134: 121–132

    Google Scholar 

  38. Henry D, Cieslak J, Torres J Z, et al. Model-based fault diagnosis and tolerant control: The ESA’s e.Deorbit mission. In: 18th European Control Conference. Napoli, 2019. 4356–4361

  39. Biesbroek R, Innocenti L, Wolahan A, et al. E. Deorbit—ESA’s active debris removal mission. In: Processdings of the 7th European Conference on Space Debris. Darmstadt, 2017

  40. Colmenarejo P, Graziano M, Novelli G, et al. On ground validation of debris removal technologies. Acta Astronaut, 2018, 158: 206–219

    Google Scholar 

  41. Pasqualetto Cassinis L, Fonod R, Gill E. Review of the robustness and applicability of monocular pose estimation systems for relative navigation with an uncooperative spacecraft. Prog Aerospace Sci, 2019, 110: 100548

    Google Scholar 

  42. Rumford T E. Demonstration of autonomous rendezvous technology (dart) project summary. In: Proceedings of SPIE: The International Society for Optical Engineering. San Diego, 2003. 10–19

  43. Thronson H, Akin D, Grunsfeld J, et al. The evolution and promise of robotic in-space servicing. In: AIAA Space 2009 Conference & Exposition. Pasadena, 2009. 6545

  44. Mulder T. Orbital express autonomous rendezvous and capture flight operations. In: AIAA/AAS Astrodynamics Specialist Conference & Exhibit. Honolulu, 2008. 6768

  45. Henshaw C G. The darpa phoenix spacecraft servicing program: Overview and plans for risk reduction. In: Peoceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS). Montreal, 2014

  46. NASA Goddard Space Flight Center. On-orbit satellite servicing study project report. [2020-06-27]. Available from: https://nexis.gsfc.nasa.gov/images/NASA_Satellite_Servicing_Project_Report_2010A.pdf

  47. NASA Goddard Space Flight Center. Cooperative servicing aids. [2020-07-27]. Available from: https://sspd.gsfc.nasa.gov/co-operative_servicing_aids.html

  48. NASA. In-space robotic manufacturing and assembly (irma). [2020-06-27]. Available from: https://www.nasa.gov/mission_pages/tdm/main/index.html

  49. Reed B B, Smith R C, Naasz B J, et al. The restore-l servicing mission. In: AIAA SPACE, 2016. Long Beach, 2016

  50. Rossetti D, Keer B, Panek J, et al. Spacecraft modularity for serviceable satellites. In: AIAA SPACE 2015 Conference and Exposition. Pasadena, 2015. 4579

  51. Keller J. DARPA RSGS program eyes space robot to maintain geosynchronous satellites. Military Aerospace Electron, 2016, 27: 4–5

    Google Scholar 

  52. Northrop grumman. Mission extension vehicle. [2020-06-28]. Available from: https://www.northropgrumman.com/space/space-logistics-services/mission-extension-vehicle/

  53. Advanced-television. Orbital atk to assemble satellites in space. [2020-06-28]. Available from: https://advanced-television.com/2016/11/30/orbital-atk-to-assemble-satellites-in-space/

  54. Sabelli E, Akin D, Carignan C. Selecting impedance parameters for the ranger 8-DOF dexterous space manipulator. In: AIAA Infotech@Aerospace 2007 Conference and Exhibit. Rohnert Park, 2007. 2837

  55. Metcalfe L, Hillebrandt T. Robotic refuelling mission demonstrating satellite refuelling technology on board the ISS. In: International Symposium on Artificial Intelligence, Robotics and Automation in Space. aint-Hubert, 2014

  56. Jefferies S A, Merrill R G, Nufer B, et al. Viability of a reusable in-space transportation system. In: AIAA SPACE 2015 Conference and Exposition. Pasadena, 2015. 4580

  57. Macewen H A. In-space infrastructures and the modular assembled space telescope (MAST). In: Proceedings of International Society of Photo-Optical Instrumentation Engineers. Pasadena, 2013

  58. Baldauf B, Polidan R, Folkman M, et al. Modular orbital demonstration of an evolvable space telescope (MODEST). In: AIAA SPACE 2015 Conference and Exposition. Pasadena, 2015

  59. Lee A X, Lu H, Gupta A, et al. Learning force-based manipulation of deformable objects from multiple demonstrations. In: IEEE International Conference on Robotics and Automation IEEE. Seattle, 2015. 177–184

  60. Buran composition remote manipulator system. [2002-08-28]. Available from: https://cn.bing.com/images/search?view=detailV2&ccid=maXSMvVP&id=548906C87A94DD0EE18367FFB-C19EE51238D927E&thid=OIP.maXSMvVPEY_LMiQsI3UzbA-HaFT&mediaurl=http%3a%2f%2fwww.buran.fr%2fbourane-buran%2fimg%2fbras-grand.jpg&exph=638&expw=891&q=The+ys-temfoard

  61. Liu D Y, Liu H, Li Z Q. Calibration strategy of space manipulator system on-orbit servicing fine operation (in Chinese). J Astron, 2017, 38: 630–637

    Google Scholar 

  62. Zhang X, Liu J, Gao Q, et al. Adaptive robust decoupling control of multi-arm space robots using time-delay estimation technique. Nonlinear Dyn, 2020, 100: 2449–2467

    Google Scholar 

  63. Gao Q, Liu J, Ju Z, et al. Dual-hand detection for human-robot interaction by a parallel network based on hand detection and body pose estimation. IEEE Trans Ind Electron, 2019, 66: 9663–9672

    Google Scholar 

  64. Ni Z, Liu J, Wu Z, et al. Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method. Chin J Aeronautics, 2019, 32: 513–530

    Google Scholar 

  65. Gillett R, Kerr A, Sallaberger C, et al. A hybrid range imaging system solution for in-flight space shuttle inspection. In: Canadian Conference on Electrical and Computer Engineering. Niagara Falls, 2004. 2147–2150

  66. Sallaberger C, Fulford P, Ower C, et al. Robotic technologies for space exploration at MDA. In: The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Munich, 2005

  67. Putz P. Space robotics in europe: A survey. Robotics Autonomous Syst, 1998, 23: 3–16

    Google Scholar 

  68. Ellery A. Tutorial review on space manipulators for space debris mitigation. Robotics, 2019, 8: 34

    Google Scholar 

  69. Fehse W. Automated Rendezvous and Docking of Spacecraft. Cambridge: Cambridge University Press, 2003

    Google Scholar 

  70. Krenn A, Stewart M, Mitchell D, et al. Flight servicing of robotic refueling mission 3. In: 28th Space Cryogenics Workshop. Southbury: NASA Kennedy Space Center, 2019

    Google Scholar 

  71. King D. Space servicing: Past, present and future. In: Proceeding of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space. St-Hubert, 2001

  72. Scott M A, Gilbert M G, Demeo M E. Active vibration damping of the space shuttle remote manipulator system. J Guidance Control Dyn, 1993, 16: 275–280

    Google Scholar 

  73. Fukazu Y, Hara N, Kanamiya Y, et al. Reactionless resolved acceleration control with vibration suppression capability for JEMRMS/SFA. In: 2008 IEEE International Conference on Robotics and Biomimetics. Bangkok, 2009

  74. Fontanals J, Dangvu B A, Porges O, et al. Integrated grasp and motion planning using independent contact regions. In: International Conference on Humanoid Robots. Madrid, 2014. 887–893

  75. Feng F, Tang L N, Xu J F, et al. A review of the end-effector of large space manipulator with capabilities of misalignment tolerance and soft capture. Sci China Tech Sci, 2016, 59: 1621–1638

    Google Scholar 

  76. Han F, Liu Y, Sun K, et al. Development of the interchangeable devices for space robot system. In: International Conference on Robotics and Biomimetics. Shenzhen, 2013. 2055–2061

  77. Kumar R, Hayes R. System requirements and design features of space station remote manipulator system mechanisms. In: 25th Aerospace Mechanisms Symposium. Toronto Ontario, 1991. 15–30

  78. Lambooy P J, Mandersloot W M, Bentall R H. Some mechanical design aspects of the european robotic arm. In: 29th Aerospace Mechanisms Symposium. Leiden, 1995. 17–29

  79. Feng F, Liu Y, Liu H, et al. Design schemes and comparison research of the end-effector of large space manipulator. Chin J Mech Eng, 2012, 25: 674–687

    Google Scholar 

  80. Feng F. Research on space large misalignment tolerance end-effector and its soft capture strategy (in Chinese). Dissertation of Doctoral Degree. Harbin: Harbin Institute of Technology, 2013

    Google Scholar 

  81. Jorgensen G, Bains E. Srms history, evolution and lessons learned. In: AIAA SPACE 2011 Conference & Exposition. Long Beach, 2013

  82. Motaghedi P, Stamm S. 6 DOF testing of the orbital express capture system. In: Modeling, Simulation, and Verification of Space-based Systems II. Orlando, 2005. 66–81

  83. Kreisel J, Reed B B, Kienlen M, et al. Unmanned on-orbit servicing (OOS): A roadmap to the future, rokviss and the tecsas mission. In: 56th International Astronautical Congress. Fukuoka, 2005. 5492–5508

  84. Rekleitis I, Martin E, Rouleau G, et al. Autonomous capture of a tumbling satellite. J Field Robotics, 2007, 24: 275–296

    Google Scholar 

  85. Aghili F. Optimal control for robotic capturing and passivation of a tumbling satellite with unknown dynamics. In: AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, 2008. 6987

  86. Rubinger B, Fulford P, Gregoris L, et al. Self-adapting robotic auxiliary hand (SARAH) for spdm operations on the international space station. In: Proceedings of the 6th International Symposium on Artificial Intelligence and Robotics & Automation in Space. Hubert, 2001

  87. Lyu X, Xia Y, Liu R Q. Design of an under-actuated self-adaptive capture device (in Chinese). J Harbin Eng Univer, 2016, 37: 1709–1715

    Google Scholar 

  88. Hirzinger G. Mechatronics for a new robot generation. IEEE/ASME Trans Mechatron, 1996, 1: 149–157

    Google Scholar 

  89. Inaba N, Nishimaki T, Asano M, et al. Rescuing a stranded satellite in space: Experimental study of satellite captures using a space manipulator. In: International Conference on Intelligent Robots and Systems. Las Vegas, 2003. 3074–3076

  90. Lovchik C S, Diftler M A. The robonaut hand: A dexterous robot hand for space. In: International Conference on Robotics and Automation. Detroit, 1999. 907–912

  91. Chalon M, Wedler A, Baumann A, et al. Dexhand: A space qualified multi-fingered robotic hand. In: International Conference on Robotics and Automation. Shanghai, 2011. 2204–2210

  92. Zhang Y, Sun K, Liu H. The non-cooperative satellite capturing nozzle device based on laser range finders guidance. In: International Conference on Robotics and Biomimetics. Bali, 2014. 148–153

  93. Liu J, Tong Y, Liu Y, et al. Development of a novel end-effector for an on-orbit robotic refueling mission. IEEE Access, 2020, 8: 17762–17778

    Google Scholar 

  94. Xu W, Liang B, Xu Y. Survey of modeling, planning, and ground verification of space robotic systems. Acta Astronaut, 2011, 68: 1629–1649

    Google Scholar 

  95. Rybus T, Seweryn K, Oleś J, et al. Application of a planar air-bearing microgravity simulator for demonstration of operations required for an orbital capture with a manipulator. Acta Astronaut, 2019, 155: 211–229

    Google Scholar 

  96. Romano M, Friedman D A, Shay T J. Laboratory experimentation of autonomous spacecraft approach and docking to a collaborative target. J Spacecraft Rockets, 2007, 44: 164–173

    Google Scholar 

  97. Schwartz J L, Peck M A, Hall C D. Historical review of air-bearing spacecraft simulators. J Guidance Control Dyn, 2003, 26: 513–522

    Google Scholar 

  98. Ullman M A. Experiments in autonomous navigation and control of a multi-manipulator, free-flying space robot. Dissertation of Doctoral Degree. California, USA: Stanford University, 1993

    Google Scholar 

  99. Iwata T, Kodama K, Numajiri F, et al. Experiment of robotic motion using drop shaft. J Robotics Soc Jpn, 1995, 13: 1206–1209

    Google Scholar 

  100. Watanabe Y, Nakamura Y. Experiments of a space robot in the free-fall environment. In: Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Noordwijk, 1999

  101. Watanabe Y, Araki K, Nakamura Y. Microgravity experiments for a visual feedback control of a space robot capturing a target. In: Conference on intelligent robots and systems. Victoria, 1998. 1993–1998

  102. Martin P K. Review of NASA’s microgravity flight services. Technical Paper. Report No.: IG-10-015. NASA: Office of Inspector Genral, 2010

  103. Sawada H, Ui K, Mori M, et al. Micro-gravity experiment of a space robotic arm using parabolic flight. Adv Robotics, 2012, 18: 247–267

    Google Scholar 

  104. Menon C, Aboudan A, Cocuzza S, et al. Free-flying robot tested on parabolic flights: Kinematic control. J Guidance Control Dyn, 2005, 28: 623–630

    Google Scholar 

  105. Nohmi M, Yamamoto T, Takagi Y. Microgravity experiment for attitude control of a tethered body by arm link motion. In: International Conference on Mechatronics and Automation. Intech, 2007. 3519–3524

  106. Akin D L, Braden J R. Neutral buoyancy technologies for extended performance testing of advanced space suits. Technical Paper. Report No.: 0148-7191. NASA: SAE Technical Paper, 2003

  107. Akin D L, Carignan C R. The reaction stabilization of on-orbit robots. IEEE Control Systems, 2000, 20: 19–33

    Google Scholar 

  108. Parrish J, Akin D L, Gefke G G. The ranger telerobotic shuttle experiment: Implications for operational EVA/robotic cooperation. In: International Conference On Environmental Systems. Toulouse: SAE International, 2000. 7–31

    Google Scholar 

  109. Menon C, Busolo S, Cocuzza S, et al. Issues and solutions for testing free-flying robots. Acta Astronaut, 2007, 60: 957–965

    Google Scholar 

  110. Lu Q, Ortega C, Ma O. Passive gravity compensation mechanisms: Technologies and applications. Recent Patent Eng, 2011, 5: 32–44

    Google Scholar 

  111. Sato Y, Ejiri A, Iida Y, et al. Micro-g emulation system using constant-tension suspension for a space manipulator. In: International Conference on Robotics and Automation. Sacramento, 1991. 1893–1900

  112. Brown H B, Dolan J M. A novel gravity compensation system for space robots. In: Proceedings of the ASCE Specialty Conference on Robotics for Challenging Environments. Albuquerque, 1994. 250–258

  113. White G C, Xu Y S. An active vertical-direction gravity compensation system. IEEE Trans Instrum Meas, 1994, 43: 786–792

    Google Scholar 

  114. Ma O, Wang J, Misra S, et al. On the validation of spdm task verification facility. J Robotic Syst, 2004, 21: 219–235

    Google Scholar 

  115. Shimoji H, Inoue M, Tsuchiya K, et al. Simulation system for a space robot using six-axis servos. Adv Robotics, 1991, 6: 179–196

    Google Scholar 

  116. Piedboeuf J C, De Carufel J, Aghili F, et al. Task verification facility for the canadian special purpose dextrous manipulator. In: Proceedings 1999 IEEE International Conference on Robotics and Automation. Detroit, 1999. 1077–1083

  117. Agrawal S K, Hirzinger G, Landzettel K, et al. A new laboratory simulator for study of motion of free-floating robots relative to space targets. IEEE Transactions on Robotics & Automation, 1996, 12: 627–633

    Google Scholar 

  118. Dubowsky S, Durfee W, Corrigan T, et al. A laboratory test bed for space robotics: The VES II. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Munich, 1994. 1562–1569

  119. Matunaga S, Yoshihara K, Takahashi T, et al. Ground experiment system for dual-manipulator-based capture of damaged satellites. In: Proceedings 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu, 2000. 1847–1852

  120. Aghili F. A robotic testbed for zero-g emulation of spacecraft. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, 2005. 3654–3661

  121. Boge T, Ma O. Using advanced industrial robotics for spacecraft rendezvous and docking simulation. In: International Conference on Robotics and Automation. Shanghai, 2011

  122. Artigas J, De Stefano M, Rackl W, et al. The OOS-SIM: An on-ground simulation facility for on-orbit servicing robotic operations. In: International Conference on Robotics and Automation. Seattle, 2015. 2854–2860

  123. De Stefano M, Artigas J, Giordano A, et al. On-ground experimental verification of a torque controlled free-floating robot. In: Symposium on Advanced Space Technologies in Robotics & Automation. Noordwijk, 2015

  124. Takahashi R, Ise H, Konno A, et al. Hybrid simulation of a dual-arm space robot colliding with a floating object. In: International Conference on Robotics & Automation. Pasadena, 2008. 1201–1206

  125. Xiao W, Sun F C, Liu H P. Design and development of a ground experiment system with free-flying space robot. In: Conference on Industrial Electronics and Applications. Beijing, 2011. 2101–2106

  126. LIU Q, Xiao X, Cheng J, et al. Study on hardware-in-the-loop simulation facility for task verification of space manipulator (in Chiese). Manned Spacecraft, 2019, 25: 227–235

    Google Scholar 

  127. Kelm B, Angielski J, Butcher S, et al. Frend: Pushing the envelope of space robotics. NRL Rev, 2008: 239–241

  128. Chen G, Li T, Chu M, et al. Review on kinematics calibration technology of serial robots. Int J Precis Eng Manuf, 2014, 15: 1759–1774

    Google Scholar 

  129. Liu H, Liu Y, Jiang L. Space Robot and Teleoperation. Harbin: Harbin Institute of Technology Press, 2012

    Google Scholar 

  130. Bai Y, Wang D. Improve the robot calibration accuracy using a dynamic online fuzzy error mapping system. IEEE Trans Syst Man Cybern B, 2004, 34: 1155–1160

    MathSciNet  Google Scholar 

  131. Schröer K, Albright S L, Grethlein M. Complete, minimal and model-continuous kinematic models for robot calibration. Robotics Comput-Integrated Manufacturing, 1997, 13: 73–85

    Google Scholar 

  132. Hayati S. Robot arm geometric link parameter estimation. In: IEEE Conference on Decision and Control. Piscataway, 1983. 1477–1483

  133. Stone H W. Kinematic modeling, identification, and control of robotic manipulators. Dissertation of Doctoral Degree. New York: Carnegie Mellon University, 1986

    Google Scholar 

  134. Zhuang H, Roth Z S, Hamano F. A complete and parametrically continuous kinematic model for robot manipulators. IEEE Trans Robot Automat, 1992, 8: 451–463

    Google Scholar 

  135. Zhuang H, Roth Z S. A linear solution to the kinematic parameter identification of robot manipulators. IEEE Trans Robot Automat, 1993, 9: 174–185

    Google Scholar 

  136. Zhong X L, Lewis J M, Frnacis LN. Autonomous robot calibration using a trigger probe. Robot Auton Syst, 1996, 18: 395–410

    Google Scholar 

  137. Okamura K, Park F C. Kinematic calibration using the product of exponentials formula. Robotica, 1996, 14: 415–421

    Google Scholar 

  138. Yang X, Wu L, Li J, et al. A minimal kinematic model for serial robot calibration using poe formula. Robotics Comput-Integrated Manufacturing, 2014, 30: 326–334

    Google Scholar 

  139. Chen I M, Yang G, Tan C T, et al. Local poe model for robot kinematic calibration. Mechanism Machine Theor, 2001, 36: 1215–1239

    MATH  Google Scholar 

  140. Chen G, Wang H, Lin Z. Determination of the identifiable parameters in robot calibration based on the poe formula. IEEE Trans Robot, 2014, 30: 1066–1077

    Google Scholar 

  141. Li C, Wu Y, Lowe H, et al. Poe-based robot kinematic calibration using axis configuration space and the adjoint error model. IEEE Trans Robot, 2016, 32: 1264–1279

    Google Scholar 

  142. Meggiolaro M A, Dubowsky S. An analytical method to eliminate the redundant parameters in robot calibration. In: IEEE International Conference on Robotics & Automation. San Francisco, 2000. 3609–3615

  143. Murray R N, Li Z, Sastry S. A Mathematical Introduction to Robotics Manipulation. Boca Raton: CRC Press, 1994

    MATH  Google Scholar 

  144. Gan Y, Dai X. Base frame calibration for coordinated industrial robots. Robot Auton Syst, 2011, 59: 563–570

    Google Scholar 

  145. He R B, Zhao Y J, Han F L, et al. Experimentation on identifying the kinematic parameters of serial mechanism based on the product-of-exponential formula (in Chinese). Robot, 2011, 33: 35–39

    Google Scholar 

  146. Du G, Zhang P. Online robot calibration based on vision measurement. Robotics Comput-Integrated Manufacturing, 2013, 29: 484492

    Google Scholar 

  147. Nubiola A, Slamani M, Bonev I A. A new method for measuring a large set of poses with a single telescoping ballbar. Precision Eng, 2013, 37: 451–460

    Google Scholar 

  148. Liang P, Chang Y L, Hackwood S. Adaptive self-calibration of vision-based robot systems. IEEE Transactions on Systems Man & Cybernetics, 1989, 19: 811–824

    Google Scholar 

  149. Wang D, Bai Y, Zhao J. Robot manipulator calibration using neural network and a camera-based measurement system. Trans Institute Measurement Control, 2012, 34: 105–121

    Google Scholar 

  150. Bennett D J, Geiger D, Hollerbach J M. Autonomous robot calibration for hand-eye coordination. Int J Robotics Res, 1991, 10: 550–559

    Google Scholar 

  151. Liu J, Zhang Y, Li Z. Improving the positioning accuracy of a neurosurgical robot system. IEEE/ASME Trans Mechatron, 2007, 12: 527–533

    Google Scholar 

  152. Liu Y, Liu H, Ni F, et al. New self-calibration approach to space robots based on hand-eye vision. J Cent South Univ Technol, 2011, 18: 1087–1096

    Google Scholar 

  153. Wang S, Jia Q, Chen G, et al. Complete relative pose error model for robot calibration. Industr Robot, 2019, 46: 622–630

    Google Scholar 

  154. Wang Y C, Wei Q Q, Hu C W, et al. A self-calibration method for space manipulators based on poe formula (in Chinese). J Beijing Univer Aeronautics Astronautics, 2018, 44: 2336–2342

    Google Scholar 

  155. Sun Y, Hollerbach J M. Observability index selection for robot calibration. In: International Conference on Robotics and Automation. Pasadena, 2008. 831–836

  156. Fei Z, Wei S W, Shuang C. Choosing measurement configurations for kinematic calibration of cable-driven parallel robots. In: International Conference on Advanced Robotics and Mechatronics. Singapore. 2018. 397–402

  157. Nanos K, Papadopoulos E. On the use of free-floating space robots in the presence of angular momentum. Intel Serv Robotics, 2011, 4: 3–15

    Google Scholar 

  158. Rybus T, Seweryn K, Sasiadek J Z. Trajectory optimization of space manipulator with non-zero angular momentum during orbital capture maneuver. In: AIAA Guidance, Navigation, and Control Conference. San Diego, 2016

  159. Nubiola A, Bonev I A. Absolute calibration of an abb irb 1600 robot using a laser tracker. Robotics Comput-Integrated Manufacturing, 2013, 29: 236–245

    Google Scholar 

  160. Chen G, Jia Q X, Li T, et al. Calibration method and experiments of robot kinematics parameters based on error model (in Chinese). Robot 2012, 34: 680–688

    Google Scholar 

  161. Newey W K. Efficient instrumental variables estimation of nonlinear models. Econometrica, 1990, 58: 809–837

    MathSciNet  MATH  Google Scholar 

  162. Chen G, Jia Q X, Li T, et al. Recursive calibrations for robot kinematics parameters (in Chinese). J Beijing Univer Posts Telecommun, 2013, 36: 28–32

    Google Scholar 

  163. Rougée A, Picard C, Ponchut C, et al. Geometrical calibration of X-ray imaging chains for three-dimensional reconstruction. Computized Med Imag Graphics, 1993, 17: 295–300

    Google Scholar 

  164. Zhang Y W, Lei W, Di W Q. Differential annealing for global optimization. In: International Conference on Swarm Intelligence. Shenzhen, 2012. 382–389

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Xu.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2017YFB1300400), the National Natural Science Foundation of China (Grant Nos. 91748201 and 51775011), and Beijing Natural Science Foundation (Gran No. 3192017).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Wang, Y., Wang, Y. et al. A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing. Sci. China Technol. Sci. 64, 462–480 (2021). https://doi.org/10.1007/s11431-020-1737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1737-4

Navigation