Skip to main content

Concept of the solar ring mission: An overview

Abstract

The concept of the Solar Ring mission was gradually formed from L5/L4 mission concept, and the proposal of its pre-phase study was funded by the National Natural Science Foundation of China in November 2018 and then by the Strategic Priority Program of Chinese Academy of Sciences in space sciences in May 2019. Solar Ring mission will be the first attempt to routinely monitor and study the Sun and inner heliosphere from a full 360-degree perspective in the ecliptic plane. The current preliminary design of the Solar Ring mission is to deploy six spacecraft, grouped in three pairs, on a sub-AU orbit around the Sun. The two spacecraft in each group are separated by about 30° and every two groups by about 120°. This configuration with necessary science payloads will allow us to establish three unprecedented capabilities: (1) determine the photospheric vector magnetic field with unambiguity, (2) provide 360-degree maps of the Sun and the inner heliosphere routinely, and (3) resolve the solar wind structures at multiple scales and multiple longitudes. With these capabilities, the Solar Ring mission aims to address the origin of solar cycle, the origin of solar eruptions, the origin of solar wind structures and the origin of severe space weather events. The successful accomplishment of the mission will advance our understanding of the star and the space environment that hold our life and enhance our capability of expanding the next new territory of human.

This is a preview of subscription content, access via your institution.

References

  1. Hudson H S, Bougeret J L, Burkepile J. Coronal mass ejections: Overview of observations. Space Sci Rev, 2006, 123: 13–30

    Google Scholar 

  2. Yashiro S. A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res, 2004, 109: A07105

    Google Scholar 

  3. Dikpati M, Charbonneau P. A babcock-leighton flux transport dynamo with solar-like differential rotation. Astrophys J, 1999, 518: 508–520

    Google Scholar 

  4. Reid G C. Solar variability and its implications for the human environment. J Atmos Sol-Terrestrial Phys, 1999, 61: 3–14

    Google Scholar 

  5. Lean J, Rind D. Evaluating sun-climate relationships since the little ice age. J Atmos Sol-Terrestrial Phys, 1999, 61: 25–36

    Google Scholar 

  6. Nandy D, Muñoz-Jaramillo A, Martens P C H. The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature, 2011, 471: 80–82

    Google Scholar 

  7. Schrijver C J, Livingston W C, Woods T N, et al. The minimal solar activity in 2008–2009 and its implications for long-term climate modeling. Geophys Res Lett, 2011, 38: L06701

    Google Scholar 

  8. McComas D J, Angold N, Elliott H A, et al. Weakest Solar wind of the space age and the current “mini” solar maximum. Astrophys J, 2013, 779: 2

    Google Scholar 

  9. Feulner G, Rahmstorf S. On the effect of a new grand minimum of solar activity on the future climate on Earth. Geophys Res Lett, 2010, 37: L05707

    Google Scholar 

  10. Domingo V, Fleck B, Poland A I. SOHO: The solar and heliospheric observatory. Space Sci Rev, 1995, 72: 81–84

    Google Scholar 

  11. Handy B N, Acton L W, Kankelborg C C, et al. The transition region and coronal explorer. Sol Phys, 1999, 187: 229–260

    Google Scholar 

  12. Ogawara Y, Takano T, Kato T, et al. The solar-A mission—An overview. Sol Phys, 1991, 136: 1–16

    Google Scholar 

  13. Pesnell W D, Thompson B J, Chamberlin P C. The solar dynamics observatory (SDO). Sol Phys, 2012, 275: 3–15

    Google Scholar 

  14. Kosugi T, Matsuzaki K, Sakao T, et al. The hinode (solar-B) mission: An overview. Sol Phys, 2007, 243: 3–17

    Google Scholar 

  15. Kaiser M L, Kucera T A, Davila J M, et al. The stereo mission: An introduction. Space Sci Rev, 2008, 136: 5–16

    Google Scholar 

  16. Müller D, Marsden R G, St. Cyr O C, et al. Solar orbiter. Exploring the sun-heliosphere connection. Sol Phys, 2013, 285: 25–70

    Google Scholar 

  17. Ogilvie K W, Parks G K. First results from WIND spacecraft: An introduction. Geophys Res Lett, 1996, 23: 1179–1181

    Google Scholar 

  18. Stone R G, Frandsen A M, Mewaldt R A, et al. The advanced composition explorer. Space Sci Rev, 1998, 86: 1–22

    Google Scholar 

  19. NOAA. Dscovr: Deep space climate observatory. 2015. https://www.nesdis.noaa.gov/content/dscovr-deep-space-climate-observatory

  20. Winkler W. HELIOS assessment and mission results. Acta Astronaut, 1976, 3: 435–447

    Google Scholar 

  21. Wenzel K P, Marsden R G, Page D E, et al. The Ulysses mission. Astron Astrophys Suppl, 1992, 92: 207

    Google Scholar 

  22. Fox N J, Velli M C, Bale S D, et al. The solar probe plus mission: Humanity’s first visit to our star. Space Sci Rev, 2016, 204: 7–48

    Google Scholar 

  23. Solomon S C, McNutt Jr. R L, Gold R E, et al. MESSENGER mission overview. Space Sci Rev, 2007, 131: 3–39

    Google Scholar 

  24. Svedhem H, Titov D V, McCoy D, et al. Venus expressłthe first european mission to venus. Planet Space Sci, 2007, 55: 1636–1652

    Google Scholar 

  25. Schmidt R. Mars express-ESA’s first mission to planet Mars. Acta Astronaut, 2003, 52: 197–202

    Google Scholar 

  26. Jakosky B M, Lin R P, Grebowsky J M, et al. The mars atmosphere and volatile evolution (MAVEN) mission. Space Sci Rev, 2015, 195: 3–48

    Google Scholar 

  27. Wang Y M, Chen X, Wang P C, et al. Concept of the solar ring mission: Preliminary design and mission profile. Sci China Tech Sci, 2020, doi: https://doi.org/10.1007/s11431-020-1612-y

  28. Allen Gary G, Hagyard M J. Transformation of vector magnetograms and the problems associated with the effects of perspective and the azimuthal ambiguity. Sol Phys, 1990, 126: 21–36

    Google Scholar 

  29. Schou J, Scherrer P H, Bush R I, et al. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol Phys, 2012, 275: 229–259

    Google Scholar 

  30. Liu L, Wang Y, Wang J, et al. Why is a flare-rich active region CME-poor? Astrophys J, 2016, 826: 119

    Google Scholar 

  31. Jin C L, Wang J X, Xie Z X. Solar intranetwork magnetic elements: Intrinsically weak or strong? Sol Phys, 2012, 280: 51–67

    Google Scholar 

  32. Wiegelmann T, Sakurai T. Solar force-free magnetic fields. Living Rev Sol Phys, 2012, 9: 5

    Google Scholar 

  33. Wiegelmann T. Nonlinear force-free modeling of the solar coronal magnetic field. J Geophys Res, 2008, 113: A03S02

    Google Scholar 

  34. Christensen-Dalsgaard J, Dappen W, Ajukov S V, et al. The current state of solar modeling. Science, 1996, 272: 1286–1292

    Google Scholar 

  35. Scherrer P H, Bogart R S, Bush R I, et al. The solar oscillations investigation-michelson doppler imager. Sol Phys, 1995, 162: 129–188

    Google Scholar 

  36. Harvey JW, Hill F, Hubbard R P, et al. The global oscillation network group (GONG) project. Science, 1996, 272: 1284–1286

    Google Scholar 

  37. Thompson M J, Toomre J, Anderson E R, et al. Differential rotation and dynamics of the solar interior. Science, 1996, 272: 1300–1305

    Google Scholar 

  38. Howe R, Christensen-Dalsgaard J, Hill F, et al. Deeply penetrating banded zonal flows in the solar convection zone. Astrophys J, 2000, 533: L163–L166

    Google Scholar 

  39. Zhao J, Bogart R S, Kosovichev A G, et al. Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the sun. Astrophys J, 2013, 774: L29

    Google Scholar 

  40. Miesch M S, Brown B P. Convective babcock-leighton dynamo models. Astrophys J, 2012, 746: L26

    Google Scholar 

  41. Simnett G M, Hudson H S. The evolution of a rapidly-expanding active region loop into a trans-equatorial coronal mass ejection. In: Prcoceedings of the Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, 31st ESLAB symposium (ESA SP-415). Netherlands, 1997. 437–441

  42. Moon Y J, Choe G S, Wang H, et al. Sympathetic coronal mass ejections. Astrophys J, 2003, 588: 1176–1182

    Google Scholar 

  43. Zhou G, Wang J, Wang Y, et al. Quasi-simultaneous flux emergence in the events of October–November 2003. Sol Phys, 2007, 244: 13–24

    Google Scholar 

  44. Schrijver C J, Title A M. Long-range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO. J Geophys Res, 2011, 116: A04108

    Google Scholar 

  45. Zhang Y, Wang J, Attrill G D R, et al. Coronal magnetic connectivity and EUV dimmings. Sol Phys, 2007, 241: 329–349

    Google Scholar 

  46. Pevtsov A A. Transequatorial loops in the solar corona. Astrophys J, 2000, 531: 553–560

    Google Scholar 

  47. Heinemann S G, Temmer M, Hofmeister S J, et al. Three-phase evolution of a coronal hole. I. 360◦ remote sensing and in situ observations. Astrophys J, 2018, 861: 151

    Google Scholar 

  48. Liu Y, Hoeksema J T, Scherrer P H, et al. Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/michelson doppler imager. Sol Phys, 2012, 279: 295–316

    Google Scholar 

  49. Aschwanden MJ, Wülser J P, Nitta N V, et al. First three-dimensional reconstructions of coronal loops with the STEREO A and B spacecraft. I. Geometry. Astrophys J, 2008, 679: 827–842

    Google Scholar 

  50. Liu J J, Wang Y M, Liu R, et al. When and how does a prominence-like jet gain kinetic energy? Astrophys J, 2014, 782: 94

    Google Scholar 

  51. Kwon R Y, Chae J, Zhang J. Stereoscopic determination of heights of extreme ultraviolet bright points using data taken by SECCHI/EUVI aboard STEREO. Astrophys J, 2010, 714: 130–137

    Google Scholar 

  52. Robbrecht E, Patsourakos S, Vourlidas A. No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys J, 2009, 701: 283–291

    Google Scholar 

  53. Wang Y, Chen C, Gui B, et al. Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. J Geophys Res, 2011, 116: A04104

    Google Scholar 

  54. Thernisien A F R, Howard R A, Vourlidas A. Modeling of flux rope coronal mass ejections. Astrophys J, 2006, 652: 763–773

    Google Scholar 

  55. Sheeley N R, Lee D D H, Casto K P, et al. The structure of streamer blobs. Astrophys J, 2009, 694: 1471–1480

    Google Scholar 

  56. Lugaz N, Vourlidas A, Roussev I I. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere—application to CME-CME interaction. Ann Geophys, 2009, 27: 3479–3488

    Google Scholar 

  57. Feng L, Inhester B, Mierla M. Comparisons of CME morphological characteristics derived from five 3D reconstruction methods. Sol Phys, 2013, 282: 221–238

    Google Scholar 

  58. Li X L, Wang Y M, Liu R, et al. Reconstructing solar wind inhomogeneous structures from stereoscopic observations in white-light: Solar wind transients in 3d. J Geophys Res Space Phys, 2020, doi: https://doi.org/10.1029/2019JA027513

  59. Li X L, Wang Y M, Liu R, et al. Reconstructing solar wind inhomogeneous structures from stereoscopic observations in white-light: Small transients along the Sun-Earth line. J Geophys Res Space Phys, 2018, 123: 7257–7270

    Google Scholar 

  60. Wang Y, Zhang Q, Liu J, et al. On the propagation of a geoeffective coronal mass ejection during 15–17 March 2015. J Geophys Res Space Phys, 2016, 121: 7423–7434

    Google Scholar 

  61. Wang Y, Shen C, Wang S, et al. Deflection of coronal mass ejection in the interplanetary medium. Sol Phys, 2004, 222: 329–343

    Google Scholar 

  62. Riley P, Crooker N U. Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophys J, 2004, 600: 1035–1042

    Google Scholar 

  63. Manchester IVW, Gombosi T, DeZeeuw D, et al. Eruption of a buoyantly emerging magnetic flux rope. Astrophys J, 2004, 610: 588–596

    Google Scholar 

  64. Wang Y, Wang B, Shen C, et al. Deflected propagation of a coronal mass ejection from the corona to interplanetary space. J Geophys Res Space Phys, 2014, 119: 5117–5132

    Google Scholar 

  65. Kay C, Opher M. The heliocentric distance where the deflections and rotations of solar coronal mass ejections occur. Astrophys J, 2015, 811: L36

    Google Scholar 

  66. Gopalswamy N, Lara A, Lepping R P, et al. Interplanetary acceleration of coronal mass ejections. Geophys Res Lett, 2000, 27: 145–148

    Google Scholar 

  67. Vršnak B, Vrbanec D, Čalogović J. Dynamics of coronal mass ejections. Astron Astrophys, 2008, 490: 811–815

    Google Scholar 

  68. Vršnak B, Žic T, Vrbanec D, et al. Propagation of interplanetary coronal mass ejections: The drag-based model. Sol Phys, 2013, 285: 295–315

    Google Scholar 

  69. Shen C L, Wang Y M, Pan Z H, et al. Full-halo coronal mass ejections: Arrival at the Earth. J Geophys Res Space Phys, 2014, 119: 5107–5116

    Google Scholar 

  70. Dasso S, Mandrini C H, Démoulin P, et al. A new model-independent method to compute magnetic helicity in magnetic clouds. Astron Astrophys, 2006, 455: 349–359

    MATH  Google Scholar 

  71. Ruffenach A, Lavraud B, Farrugia C J, et al. Statistical study of magnetic cloud erosion by magnetic reconnection. J Geophys Res Space Phys, 2015, 120: 43–60

    Google Scholar 

  72. Wang Y M, Shen C L, Liu R, et al. Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud. J Geophys Res Space Phys, 2018, 123: 3238–3261

    Google Scholar 

  73. Shen C, Wang Y, Wang S, et al. Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nat Phys, 2012, 8: 923–928

    Google Scholar 

  74. Lugaz N, Farrugia C J, Davies J A, et al. The deflection of the two interacting coronal mass ejections of 2010 May 23–24 as revealed by combined in site measurements and heliospheric imaging. Astrophys J, 2012, 759: 68

    Google Scholar 

  75. Temmer M, Veronig A M, Peinhart V, et al. Asymmetry in the CME-CME interaction process for the events from 2011 February 14–15. Astrophys J, 2014, 785: 85

    Google Scholar 

  76. Mishra W, Wang Y, Srivastava N, et al. Assessing the nature of collisions of coronal mass ejections in the inner heliosphere. Astrophys J Suppl Ser, 2017, 232: 5

    Google Scholar 

  77. Larson D E, Lin R P, McTiernan J M, et al. Tracing the topology of the October 18–20, 1995, magnetic cloud with ∼ 0:1 − 102 kev electrons. Geophys Res Lett, 1997, 24: 1911–1914

    Google Scholar 

  78. Wang Y, Zhou Z, Shen C, et al. Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model. J Geophys Res Space Phys, 2015, 120: 1543–1565

    Google Scholar 

  79. Wang Y, Zhuang B, Hu Q, et al. On the twists of interplanetary magnetic flux ropes observed at 1 AU. J Geophys Res Space Phys, 2016, 121: 9316–9339

    Google Scholar 

  80. Démoulin P, Janvier M, Dasso S. Magnetic flux and helicity of magnetic clouds. Sol Phys, 2016, 291: 531–557

    Google Scholar 

  81. Owens M J. Do the legs of magnetic clouds contain twisted flux-rope magnetic fields? Astrophys J, 2016, 818: 197

    Google Scholar 

  82. Zhao A, Wang Y, Chi Y, et al. Main cause of the poloidal plasma motion inside a magnetic cloud inferred from multiple-spacecraft observations. Sol Phys, 2017, 292: 58

    Google Scholar 

  83. Owens M J, Lockwood M, Barnard L A. Coronal mass ejections are not coherent magnetohydrodynamic structures. Sci Rep, 2017, 7: 4152

    Google Scholar 

  84. Desai M, Giacalone J. Large gradual solar energetic particle events. Living Rev Sol Phys, 2016, 13: 3

    Google Scholar 

  85. Cane H V, Reames D V, von Rosenvinge T T. The role of interplanetary shocks in the longitude distribution of solar energetic particles. J Geophys Res, 1988, 93: 9555–9567

    Google Scholar 

  86. Guo J N, Dumbović M, Wimmer-Schweingruber R F, et al. Modeling the evolution and propagation of 10 September 2017 CMEs and SEPs arriving at Mars constrained by remote sensing and in situ measurement. Space Weather, 2018, 16: 1156–1169

    Google Scholar 

  87. Hassler D M, Zeitlin C, Wimmer-Schweingruber R F, et al. The radiation assessment detector (RAD) investigation. Space Sci Rev, 2012, 170: 503–558

    Google Scholar 

  88. Wang Y, Zhang J, Shen C. An analytical model probing the internal state of coronal mass ejections based on observations of their expansions and propagations. J Geophys Res, 2009, 114: A10104

    Google Scholar 

  89. Mishra W, Wang Y. Modeling the thermodynamic evolution of coronal mass ejections using their kinematics. Astrophys J, 2018, 865: 50

    Google Scholar 

  90. Wang Y, Cao H, Chen J, et al. Solar limb prominence catcher and tracker (SLIPCAT): An automated system and its preliminary statistical results. Astrophys J, 2010, 717: 973–986

    Google Scholar 

  91. Gosling J T. Magnetic reconnection in the solar wind. Space Sci Rev, 2012, 172: 187–200

    Google Scholar 

  92. Shen F, Shen C, Wang Y, et al. Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations. Geophys Res Lett, 2013, 40: 1457–1461

    Google Scholar 

  93. Reiner M J, Stone R G. A new method for reconstructing Type-III trajectories. Sol Phys, 1986, 106: 397–401

    Google Scholar 

  94. Krupar V, Maksimovic M, Santolik O, et al. Statistical survey of type III radio bursts at long wavelengths observed by the solar terrestrial relations observatory (STEREO)/waves instruments: Goniopolarimetric properties and radio source locations. Sol Phys, 2014, 289: 4633–4652

    Google Scholar 

  95. Magdalenić J, Marqué C, Krupar V, et al. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission. Astrophys J, 2014, 791: 115

    Google Scholar 

  96. Zhang P, Wang C, Ye L, et al. Forward modeling of the type III radio burst exciter. Sol Phys, 2019, 294: 62

    Google Scholar 

  97. Cecconi B, Bonnin X, Hoang S, et al. STEREO/waves goniopolarimetry. Space Sci Rev, 2008, 136: 549–563

    Google Scholar 

  98. Leamon R J, Smith CW, Ness N F, et al. Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J Geophys Res, 1998, 103: 4775–4788

    Google Scholar 

  99. Hu R X, Shan X, Yuan G Y, et al. A low-energy ion spectrometer with half-space entrance for three-axis stabilized spacecraft. Sci China Tech Sci, 2019, 62: 1015–1027

    Google Scholar 

  100. Malandraki O E, Lario D, Lanzerotti L J, et al. October/November 2003 interplanetary coronal mass ejections: ACE/EPAM solar energetic particle observations. J Geophys Res, 2005, 110: A09S06

    Google Scholar 

  101. Wu W, Chen M, Zhang Z, et al. Overview of deep space laser communication. Sci China Inf Sci, 2018, 61: 040301

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuMing Wang.

Additional information

This work was supported by the Strategic Priority Program of CAS (Grant Nos. XDB41000000 and XDA15017300), the National Natural Science Foundation of China (NSFC) (Grant No. 41842037). WANG YuMing, SHEN ChengLong, GUO JingNan, ZHANG QuanHao, LIU Kai, LI XiaoLei, LIU Rui and WANG Shui are also supported by the CAS Key Research Program of Frontier Sciences (Grant No. QYZDB-SSW-DQC015), and the NSFC (Grant Nos. 41774178, 41761134088, 41750110481 and 11925302), JI HaiSheng by the NSFC (Grant No. 11790302), and Xia LiDong and Huang ZhengHua by the NSFC (Grant No. 41627806). We thank Dr. J. Zhao from Stanford University for reading the manuscript and providing suggestions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ji, H., Wang, Y. et al. Concept of the solar ring mission: An overview. Sci. China Technol. Sci. 63, 1699–1713 (2020). https://doi.org/10.1007/s11431-020-1603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1603-2

  • space mission concept
  • solar cycle
  • solar eruptions
  • solar wind
  • space weather