Skip to main content
Log in

First-principles insight into the entanglements between superionic diffusion and Li/Al antisite in Al-doped Li1+xAlxGe2−x(PO4)3 (LAGP)

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

As an ion conductor, the Al-doped Li1+xAlxGe2−x(PO4)3 (LAGP) demonstrates the superionic Li diffusion behavior, however, without the convinced verifications. In this context, the density functional theory (DFT) calculations are employed to clarify the structural origin of the fast Li ion migration kinetics in LAGP solid electrolytes. The calculated results show that doping of Al leads to an emerging high-energy 36f Li site, which plays an important role in promoting the Li diffusion and can largely lower the Li ion diffusion energy barrier. Moreover, the Li/Al antisite defect is investigated firstly, with which the Li ions are excited to occupy a relatively high energy site in LAGP. The obvious local structural distortion by Li/Al antisite results in the coordination change upon Li diffusion (lattice field distortion), which facilitates the Li diffusion significantly and is probably the main reason to account for the superionic diffusion phenomenon. Therefore, the occupation of Li at high-energy sites should be an effective method to establish the fast Li diffusion, which implies a rewarding avenue to build better Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zubi G, Dufo-López R, Carvalho M, et al. The lithium-ion battery: State of the art and future perspectives. Renew Sustain Energy Rev, 2018, 1: 292–308

    Article  Google Scholar 

  2. Liu K, Liu Y, Lin D, et al. Materials for lithium-ion battery safety. Sci Adv, 2018, 4: eaas9820

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  3. Wu X, Song K, Zhang X, et al. Safety issues in lithium ion batteries: Materials and cell design. Front Energy Res, 2019, 7: 65

    Article  Google Scholar 

  4. Francisco B E, Stoldt C R, M’Peko J C. Energetics of ion transport in NASICON-type electrolytes. J Phys Chem C, 2015, 1: 16432–16442

    Article  Google Scholar 

  5. Weiss M, Weber D A, Senyshyn A, et al. Correlating transport and structural properties in Li1+xAlxGe2−x(PO4)3 (LAGP) prepared from aqueous solution. ACS Appl Mater Interfaces, 2018, 1: 10935–10944

    Article  Google Scholar 

  6. Meesala Y, Chen C Y, Jena A, et al. All-solid-state Li-ion battery using Li1.5Al0.5Ge1.5(PO4)3 as electrolyte without polymer interfacial adhesion. J Phys Chem C, 2018, 1: 14383–14389

    Article  Google Scholar 

  7. Sun Z, Liu L, Lu Y, et al. Preparation and ionic conduction of Li1.5-Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor. J Eur Ceramic Soc, 2019, 1: 402–408

    Article  Google Scholar 

  8. Zhao E, Ma F, Jin Y, et al. Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes: The effect of dispersant. J Alloys Compd, 2016, 1: 646–653

    Article  Google Scholar 

  9. Pérez-Estébanez M, Isasi-Marín J, Többens D M, et al. A systematic study of NASICON-type Li1+xMxTi2−x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy. Solid State Ion, 2014, 1: 1–8

    Article  Google Scholar 

  10. Huang L, Wen Z, Wu M, et al. Electrochemical properties of Li1.4-Al0.4Ti1.6(PO4)3 synthesized by a co-precipitation method. J Power Sources, 2011, 1: 6943–6946

    Article  Google Scholar 

  11. Zhang M, Huang Z, Cheng J, et al. Solid state lithium ionic conducting thin film Li1.4Al0.4Ge1.6(PO4)3 prepared by tape casting. J Alloys Compd, 2014, 1: 147–152

    Article  Google Scholar 

  12. Waetzig K, Rost A, Heubner C, et al. Synthesis and sintering of Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolyte for ceramics with improved Li+ conductivity. J Alloys Compd, 2020, 818: 153237

    Article  CAS  Google Scholar 

  13. Feng J K, Lu L, Lai M O. Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3. J Alloys Compd, 2010, 1: 255–258

    Article  Google Scholar 

  14. He K, Zu C, Wang Y, et al. Stability of lithium ion conductor NASICON structure glass ceramic in acid and alkaline aqueous solution. Solid State Ion, 2014, 1: 78–81

    Article  ADS  Google Scholar 

  15. Hull S. Superionics: Crystal structures and conduction processes. Rep Prog Phys, 2004, 1: 1233–1314

    Article  ADS  Google Scholar 

  16. Wan T H, Lu Z, Ciucci F. A first principle study of the phase stability, ion transport and substitution strategy for highly ionic conductive sodium antipervoskite as solid electrolyte for sodium ion batteries. J Power Sources, 2018, 1: 61–70

    Article  Google Scholar 

  17. Lang B, Ziebarth B, Elsässer C. Lithium ion conduction in LiTi2(PO4)3 and related compounds based on the NASICON structure: A first-principles study. Chem Mater, 2015, 1: 5040–5048

    Article  Google Scholar 

  18. Rossbach A, Tietz F, Grieshammer S. Structural and transport properties of lithium-conducting NASICON materials. J Power Sources, 2018, 1: 1–9

    Article  Google Scholar 

  19. He X, Zhu Y, Mo Y. Origin of fast ion diffusion in super-ionic conductors. Nat Commun, 2017, 8: 15893

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Li H, Okamoto N L, Hatakeyama T, et al. Fast diffusion of multivalent ions facilitated by concerted interactions in dual-ion battery systems. Adv Energy Mater, 2018, 8: 1801475

    Article  Google Scholar 

  21. Gao A, Li M, Guo N, et al. K-birnessite electrode obtained by ion exchange for potassium-ion batteries: Insight into the concerted ionic diffusion and K storage mechanism. Adv Energy Mater, 2019, 9: 1802739

    Article  Google Scholar 

  22. Zhang Z, Zou Z, Kaup K, et al. Correlated migration invokes jigher Na+-ion conductivity in NaSICON-type solid electrolytes. Adv Energy Mater, 2019, 9: 1902373

    Article  CAS  Google Scholar 

  23. Siqi S, Jian G, Yue L, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chin Phys B, 2016, 25: 018212

    Article  ADS  Google Scholar 

  24. Liu Q, Li S, Wang S, et al. Kinetically determined phase transition from stage II (LiC12) to stage I (LiC6) in a graphite anode for Li-ion batteries. J Phys Chem Lett, 2018, 1: 5567–5573

    Article  Google Scholar 

  25. Sun Y, Lu X, Xiao R, et al. Kinetically controlled lithium-staging in delithiated LiFePO4 driven by the Fe center mediated interlayer Li-Li interactions. Chem Mater, 2012, 1: 4693–4703

    Article  Google Scholar 

  26. Gao Y, Ma J, Wang X, et al. Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3. J Mater Chem A, 2014, 1: 4811–4818

    Article  Google Scholar 

  27. Sun Y, Zhao L, Pan H, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun, 2013, 4: 1870

    Article  PubMed  ADS  Google Scholar 

  28. He Y, Sun Y, Lu X, et al. First-principles prediction of fast migration channels of potassium ions in KAlSi3O8 hollandite: Implications for high conductivity anomalies in subduction zones. Geophys Res Lett, 2016, 1: 6228–6233

    Article  ADS  Google Scholar 

  29. Huang Y, He Y, Sheng H, et al. Li-ion battery material under high pressure: Amorphization and enhanced conductivity of Li4Ti5O12. Natl Sci Rev, 2019, 1: 239–246

    Article  Google Scholar 

  30. He Y, Lu X, Kim D Y. A first-principles study on Si24 as an anode material for rechargeable batteries. RSC Adv, 2018, 1: 20228–20233

    Article  Google Scholar 

  31. Zhang Q, Zhang S, Ning F, et al. Calcium doping of lithium titanium oxide nanospheres: A combined first-principles and experimental study. Energy Technol, 2017, 1: 539–543

    Article  Google Scholar 

  32. Redhammer G J, Rettenwander D, Pristat S, et al. A single crystal X-ray and powder neutron diffraction study on NASICON-type Li1+x-AlxTi2−x(PO4)3 (0 ≤ x ≤ 0.5) crystals: Implications on ionic conductivity. Solid State Sci, 2016, 1: 99–107

    Article  ADS  Google Scholar 

  33. Monchak M, Hupfer T, Senyshyn A, et al. Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor. Inorg Chem, 2016, 1: 2941–2945

    Article  Google Scholar 

  34. Arbi K, Hoelzel M, Kuhn A, et al. Local structure and lithium mobility in intercalated Li3AlxTi2−x(PO4)3 NASICON type materials: A combined neutron diffraction and NMR study. Phys Chem Chem Phys, 2014, 1: 18397–18405

    Article  Google Scholar 

  35. Okhotnikov K, Charpentier T, Cadars S. Supercell program: A combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J Cheminform, 2016, 8: 17

    Article  PubMed  PubMed Central  Google Scholar 

  36. Momma K, Izumi F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J Appl Crystlogr, 2008, 1: 653–658

    Article  Google Scholar 

  37. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 1: 558–561

    Article  ADS  Google Scholar 

  38. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 1: 11169–11186

    Article  ADS  Google Scholar 

  39. Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 1: 17953–17979

    Article  ADS  Google Scholar 

  40. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 1: 3865–3868

    Article  ADS  Google Scholar 

  41. Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys, 2000, 1: 9901–9904

    Article  ADS  Google Scholar 

  42. Liu Y, Yuan Y, Liu F, et al. Interaction between magnetic moments and itinerant carriers in d0 ferromagnetic SiC. Phys Rev B, 2017, 95: 195309

    Article  ADS  Google Scholar 

  43. Lu X, Wang S, Xiao R, et al. First-principles insight into the structural fundamental of super ionic conducting in NASICON MTi2(PO4)3 (M =Li, Na) materials for rechargeable batteries. Nano Energy, 2017, 1: 626–633

    Article  Google Scholar 

  44. Wang Q, Zhang M, Zhou C, et al. Concerted ion-exchange mechanism for sodium diffusion and its promotion in Na3V2(PO4)3 framework. J Phys Chem C, 2018, 1: 16649–16654

    Article  Google Scholar 

  45. Zhang B, Lin Z, Dong H, et al. Revealing cooperative Li-ion migration in Li1+xAlxTi2−x(PO4)3 solid state electrolytes with high Al doping. J Mater Chem A, 2020, 1: 342–348

    Article  Google Scholar 

  46. Arjmandi H R, Grieshammer S. Defect formation and migration in Nasicon Li1+xAlxTi2−x(PO4)3. Phys Chem Chem Phys, 2019, 1: 24232–24238

    Article  Google Scholar 

  47. Lu Z, Chen C, Baiyee Z M, et al. Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors. Phys Chem Chem Phys, 2015, 1: 32547–32555

    Article  Google Scholar 

  48. Oh K, Chang D, Lee B, et al. Native defects in Li10GeP2S12 and their effect on lithium diffusion. Chem Mater, 2018, 1: 4995–5004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Lu or DaPeng Cao.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2019YFA0705700), National Natural Science Foundation of China (Grant No. 11704019), the Hundreds of Talents Program of Sun Yat-sen University and the Fundamental Research Funds for the Central Universities. Computational resources were provided by the National Supercomputing Center in Shenzhen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Lu, X. & Cao, D. First-principles insight into the entanglements between superionic diffusion and Li/Al antisite in Al-doped Li1+xAlxGe2−x(PO4)3 (LAGP). Sci. China Technol. Sci. 63, 1787–1794 (2020). https://doi.org/10.1007/s11431-020-1562-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1562-3

Navigation