Skip to main content
Log in

A reduced-order method for parameter identification of a crystal plasticity model considering crystal symmetry

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The focus of this paper is to identify the material parameters of a crystal plasticity model for Ni-base single crystal superalloys. To facilitate the stepwise calibration of the multistage flow rules, further decoupling and simplification are implemented without compromising its simulating capability. Reduced-order kinematics in crystal plasticity, which only comprise scalar components instead of their original tensors, are derived by considering the crystal symmetry and uniaxial loading condition. The relationships between components in elastic and plastic deformation gradient are established by explicitly accounting the control quantities, which is overall load in stress-controlled creep tests or displacement of gauge section in strain-controlled experiments, respectively. In addition, their approximate forms are also given by neglecting both elastic changes in volume and section area. A new objective function based on the shortest distance was introduced to correlate data from the simulations and experiments, and an integrated optimization process without finite element computation was developed into a commercial software package. Parameters in the crystal plasticity model are successfully calibrated by the efficient reduced-order method from the experimental data in such a sequence as: elastic, plastic, primary stage and secondary to tertiary stages creep laws. The multistage weak coupling flow rules can significantly reduce the non-uniqueness of the optimal solution under the circumstance of excessive parameters but insufficient experimental data. Finally, the optimized results with the reduced-order method have been validated by the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MacLachlan D W, Knowles D M. Modelling and prediction of the stress rupture behaviour of single crystal superalloys. Mater Sci Eng- A, 2001, 302: 275–285

    Article  Google Scholar 

  2. MacLachlan D W, Gunturi G S K, Knowles D M. Modelling the uniaxial creep anisotropy of nickel base single crystal superalloys CMSX-4 and RR2000 at 1023 K using a slip system based finite element approach. Comput Mater Sci, 2002, 25: 129–141

    Article  Google Scholar 

  3. MacLachlan D W, Wright L W, Gunturi S, et al. Constitutive modelling of anisotropic creep deformation in single crystal blade alloys SRR99 and CMSX-4. Int J Plast, 2001, 17: 441–467

    Article  MATH  Google Scholar 

  4. Lemaitre L, Chaboche J L. Mechanics of Solid Materials. Cambridge: Cambridge University Press, 1994

    MATH  Google Scholar 

  5. Chaboche J L. A review of some plasticity and viscoplasticity constitutive theories. Int J Plast, 2008, 24: 1642–1693

    Article  MATH  Google Scholar 

  6. Li S X, Smith D J. Development of an anisotropic constitutive model for single-crystal superalloy for combined fatigue and creep loading. Int J Mech Sci, 1998, 40: 937–948

    Article  MATH  Google Scholar 

  7. Han S, Li S, Smith D J. Comparison of phenomenological and crystallographic models for single crystal nickel base superalloys. I. Analytical identification. Mech Mater, 2001, 33: 251–266

    Google Scholar 

  8. Han S, Li S, Smith D J. Comparison of phenomenological and crystallographic models for single crystal nickel base superalloys. II. Numerical simulations. Mech Mater, 2001, 33: 267–282

    Google Scholar 

  9. Meric L, Poubanne P, Cailletaud G. Single crystal modeling for structural calculations: Part 1—model presentation. J Eng Mater Technol, 1991, 113: 162

    Article  Google Scholar 

  10. Meric L, Cailletaud G. Single crystal modeling for structural calculations: Part 2—finite element implementation. J Eng Mater Technol, 1991, 113: 171

    Article  Google Scholar 

  11. Hill R. Generalized constitutive relations for incremental deformation of metal crystals by multislip. J Mech Phys Solids, 1966, 14: 95–102

    Article  Google Scholar 

  12. Hill R. The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids, 1967, 15: 79–95

    Article  Google Scholar 

  13. Rice J R. On the structure of stress-strain relations for time-dependent plastic deformation in metals. J Appl Mech, 1970, 37: 728–737

    Article  Google Scholar 

  14. Rice J R. Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity. J Mech Phys Solids, 1971, 19: 433–455

    Article  MATH  Google Scholar 

  15. Peirce D, Asaro R J, Needleman A. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall, 1982, 30: 1087–1119

    Article  Google Scholar 

  16. Asaro R J. Micromechanics of crystals and polycrystals. Adv Appl Mech, 1983, 23: 1–115

    Article  Google Scholar 

  17. Peirce D, Asaro R J, Needleman A. Material rate dependence and localized deformation in crystalline solids. Acta Metall, 1983, 31: 1951–1976

    Article  Google Scholar 

  18. MacLachlan D W, Williams S, Knowles D. A damage mechanics approach to stress rupture and creep of single crystal blade alloys. In: Proceedings of 7 th International Conference on Creep and Fracture of Engineering Materials and Structures. Irvine, 1997. 707–716

    Google Scholar 

  19. Gunturi S S K, MacLachlan D W, Knowles D M. Anisotropic creep in CMSX-4 in orientations distant from 001. Mater Sci Eng-A, 2000, 289: 289–298

    Article  Google Scholar 

  20. Knowles D M, Gunturi S. The role of 112111 slip in the asymmetric nature of creep of single crystal superalloy CMSX-4. Mater Sci Eng-A, 2002, 328: 223–237

    Article  Google Scholar 

  21. Przybyla C P, McDowell D L. Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100. Int J Plast, 2010, 26: 372–394

    Article  MATH  Google Scholar 

  22. Staroselsky A, Cassenti B N. Combined rate-independent plasticity and creep model for single crystal. Mech Mater, 2010, 42: 945–959

    Article  Google Scholar 

  23. Staroselsky A, Cassenti B N. Creep, plasticity, and fatigue of single crystal superalloy. Int J Solids Struct, 2011, 48: 2060–2075

    Article  Google Scholar 

  24. Srivastava A, Gopagoni S, Needleman A, et al. Effect of specimen thickness on the creep response of a Ni-based single-crystal superalloy. Acta Mater, 2012, 60: 5697–5711

    Article  Google Scholar 

  25. Staroselsky A, Martin T J, Cassenti B. Transient thermal analysis and viscoplastic damage model for life prediction of turbine components. J Eng Gas Turbines Power, 2015, 137: 042501

    Article  Google Scholar 

  26. Furukawa T, Sugata T, Yoshimura S, et al. An automated system for simulation and parameter identification of inelastic constitutive models. Comput Methods Appl Mech Eng, 2002, 191: 2235–2260

    Article  MATH  Google Scholar 

  27. Li B, Lin J, Yao X. A novel evolutionary algorithm for determining unified creep damage constitutive equations. Int J Mech Sci, 2002, 44: 987–1002

    Article  MATH  Google Scholar 

  28. Shenoy M M, Gordon A P, McDowell D L, et al. Thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy. J Eng Mater Technol, 2005, 127: 325–336

    Article  Google Scholar 

  29. Shenoy M M. Constitutive Modeling and Life Prediction in Ni-base Superalloys. Dissertation for Dcotoral Degree. Atlanta: Georgia Institute of Technology, 2006

    Google Scholar 

  30. Bronkhorst C A, Kalidindi S R, Anand L. Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals. Phil Trans R Soc Lond A, 1992, 341: 443–477

    Article  Google Scholar 

  31. Anand L. Single-crystal elasto-viscoplasticity: Application to texture evolution in polycrystalline metals at large strains. Comput Methods Appl Mech Eng, 2004, 193: 5359–5383

    Article  MathSciNet  MATH  Google Scholar 

  32. Herrera-Solaz V, LLorca J, Dogan E, et al. An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: Application to AZ31 Mg alloy. Int J Plast, 2014, 57: 1–15

    Article  Google Scholar 

  33. Springmann M, Kuna M. Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques. Comput Mater Sci, 2005, 32: 544–552

    Article  Google Scholar 

  34. Muñoz-Rojas P A, Cardoso E L, Vaz M. Parameter identification of damage models using genetic algorithms. Exp Mech, 2010, 50: 627–634

    Article  Google Scholar 

  35. Grédiac M, Pierron F. Applying the virtual fields method to the identification of elasto-plastic constitutive parameters. Int J Plast, 2006, 22: 602–627

    Article  MATH  Google Scholar 

  36. Sutton M A, Yan J H, Avril S, et al. Identification of heterogeneous constitutive parameters in a welded specimen: Uniform stress and virtual fields methods for material property estimation. Exp Mech, 2008, 48: 451–464

    Article  Google Scholar 

  37. Réthoré J, Muhibullah J, Elguedj T, et al. Robust identification of elasto-plastic constitutive law parameters from digital images using 3D kinematics. Int J Solids Struct, 2013, 50: 73–85

    Article  Google Scholar 

  38. Lin J, Yang J. GA-based multiple objective optimisation for determining viscoplastic constitutive equations for superplastic alloys. Int J Plast, 1999, 15: 1181–1196

    Article  MATH  Google Scholar 

  39. Chaparro B M, Thuillier S, Menezes L F, et al. Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms. Comput Mater Sci, 2008, 44: 339–346

    Article  Google Scholar 

  40. Vaz Jr. M, Muñoz-Rojas P A, Cardoso E L, et al. Considerations on parameter identification and material response for Gurson-type and Lemaitre-type constitutive models. Int J Mech Sci, 2016, 106: 254–265

    Google Scholar 

  41. Kröner E. Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch Rational Mech Anal, 1959, 4: 273–334

    Article  MathSciNet  MATH  Google Scholar 

  42. Lee E H. Elastic-plastic deformation at finite strains. J Appl Mech, 1969, 36: 1–6

    Article  MATH  Google Scholar 

  43. Eringen A C. Mechanics of Continua. Huntington: Robert E. Krieger Publishing Co., 1980. 606

    Google Scholar 

  44. Mackay R A, Maier R D. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals. MTA, 1982, 13: 1747–1754

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DuoQi Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Yang, X., Shi, D. et al. A reduced-order method for parameter identification of a crystal plasticity model considering crystal symmetry. Sci. China Technol. Sci. 62, 373–387 (2019). https://doi.org/10.1007/s11431-018-9353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9353-2

Keywords

Navigation