Skip to main content
Log in

The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The China Seismo-Electromagnetic satellite (CSES) was designed to study the ionospheric disturbances associated with earthquakes. Satellite payload includes nine instruments. Among them, we recall instruments for plasma analysis, electric, magnetic fields and high energy particle detectors. Langmuir probe (LP) and plasma analyzer package (PAP) are the in-situ payloads to measure space plasma. Its scientific objective is to research space plasma physics phenomena and the ionosphere changes caused by seismic. It is the first application of in-situ measurement technology in the field of space exploration in China. The Langmuir probe and Plasma Analyzer Package have been tested and calibrated to verify the performance in INAF-IAPS. Currently, on-orbit testing is being performed with satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bleier T, Freund F. Impending earthquake have been sending us warning signals and people are starting to listen. IEEE Spectrum International, 2005, 12: 17–21

    Google Scholar 

  2. Parrot M, Berthelier J J, Lebreton J P, et al. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys Chem Earth Parts A/B/C, 2006, 31: 486–495

    Article  Google Scholar 

  3. Hasbi A M, Mohd Ali M A, Misran N. Ionospheric variations before some large earthquakes over Sumatra. Nat Hazards Earth Syst Sci, 2011, 11: 597–611

    Article  Google Scholar 

  4. Heki K. Ionospheric electron enhancement preceding the 2011 Tohoku- Oki earthquake. Geophys Res Lett, 2011, 38: L17312

    Google Scholar 

  5. Hsiao C C, Liu J Y, Oyama K I, et al. Ionospheric electron density anomaly prior to the December 26, 2006 M7.0 Pingtung earthquake doublet observed by FORMOSAT-3/COSMIC. Phys Chem Earth Parts A/B/C, 2009, 34: 474–478

    Article  Google Scholar 

  6. Pulinets S A, Ouzounov D, Ciraolo L, et al. Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003. Ann Geophys, 2006, 24: 835–849

    Article  Google Scholar 

  7. Kamogawa M. Preseismic lithosphere-atmosphere-ionosphere coupling. Eos Trans AGU, 2006, 87: 417–424

    Article  Google Scholar 

  8. Hayakawa M. Electromagnetic phenomena associated with earthquakes: Review. IEEJ Trans FM, 2001, 121: 893–898

    Article  Google Scholar 

  9. Liu J, Huang J, Zhang X. Ionospheric perturbations in plasma parameters before global strong earthquakes. Adv Space Res, 2014, 53: 776–787

    Article  Google Scholar 

  10. Hobara Y, Nakamura R, Suzuki M, et al. Ionospheric perturbations observed by the low altitude satellite DEMETER and possible relation with seismicity. J Atmos Electricity, 2013, 33: 21–29

    Article  Google Scholar 

  11. Karia S, Sarkar S, Pathak K. Analysis of GPS-based TEC and electron density by the DEMETER satellite before the Sumatra earthquake on 30 September 2009. Int J Remote Sens, 2012, 33: 5119–5134

    Article  Google Scholar 

  12. Yang F, Shen X H, Wu Y. Electromagnetic satellite and its application in the field of seismo-precursor detection. Space Eng, 2008, 17: 68–73

    Google Scholar 

  13. Zhang X, Shen X, Zhao S, et al. The characteristics of quasistatic electric field perturbations observed by DEMETER satellite before large earthquakes. J Asian Earth Sci, 2014, 79: 42–52

    Article  Google Scholar 

  14. Shen X H, Wu Y, Shan X J. Remote sensing application in earthquake science and general proposal for earthquake satellite project in China. Recent Develop World Seismol, 2007, 344: 38–45

    Google Scholar 

  15. Shen X H, Zhang X M, Yuan S G, et al. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci China Tech Sci, 2018, 61: 634–642

    Article  Google Scholar 

  16. Cao J B, Zeng L, Zhan F, et al. The electromagnetic wave experiment for CSES mission: Search coil magnetometer. Sci China Tech Sci, 2018, 61: 653–658

    Article  Google Scholar 

  17. Cheng B J, Zhou B, Magnes W, et al. High precision magnetometer for geomagnetic exploration onboard of the China Seismo-Electromagnetic Satellite. Sci China Tech Sci, 2018, 61: 659–668

    Article  Google Scholar 

  18. Ambrosi G, Bartocci S, Basara L, et al. The HEPD particle detector of the CSES satellite mission for investigating seismo-associated perturbations of the Van Allen belts. Sci China Tech Sci, 2018, 61: 643–652

    Article  Google Scholar 

  19. Mott-Smith H M, Langmuir I. the theory of collectors in gaseous discharges. Phys Rev, 1926, 28: 727–763

    Google Scholar 

  20. Guan Y, Wang S, Liu C. Design and simulation for the sensor of the space based Langmuir probe. Chin J Space Sci, 2012, 32: 750–756

    Google Scholar 

  21. Liu C, Guan Y B, Zhang A B. The ionosphere measurement technology of Langmuir probe on China seismo-electromagnetic satellite. Acta Phys Sin, 2016, 65: 189401

    Google Scholar 

  22. Wahlström M K, Johansson E, Veszelei E, et al. Improved Langmuir probe surface coatings for the Cassini satellite. Thin Solid Films, 1992, 220: 315–320

    Article  Google Scholar 

  23. Eriksson A I, Boström R, Gill R, et al. RPC-LAP: The Rosetta Langmuir probe instrument. Space Sci Rev, 2007, 128: 729–744

    Article  Google Scholar 

  24. Jiao W X. Space Exploration. Beijing: Peking University Press, 2002. 217–218

    Google Scholar 

  25. Rich F J. Users Guide for the Topside Ionospheric Plasma Monitor (SSIES, SSIES-2 and SSIES-3) on Spacecraft of the Defense Meteorological Satellite Program. Environ Res Paper, 1994, No.1151

    Google Scholar 

  26. Heelis R A, Hanson W B. Measurement techniques in space plasmas. Geophys Monogr Ser, 1998, 61: 102

    Google Scholar 

  27. Zheng X Z, Zhang A B, Guan Y B. Research on retarding potential analyzer abroad CSES. Acta Phys Sin, 2017, 66: 079401

    Google Scholar 

  28. Marrese C M, Majumdar N, Haas J M. Development of a Singleorifice Retarding Potential Analyzer for Hall Thruster Plume Characterization. In: Proceedings of the 25th International Electric Propulsion conference. Cleveland, 1997, 24: 397–404

    Google Scholar 

  29. Dahl D A. 2000SIMION 3D version 7.0 user’s manual, INEEL-95/0403. Idaho: Idaho National Engineering and Environment Laboratory

  30. Maha S. QUASSIM. Inter-Calibration Between Plasma Instruments Onboard DEMETER. Plasma Science and Technology, 2008, 10: 539–545

    Google Scholar 

  31. Vannaroni G, Bruno R, Giammaria F, et al. “The INAF-IFSI Plasma Chamber. Technical Description”. INAF-IFSI-2009-18, 2009

    Google Scholar 

  32. Vannaroni G, Bruno R, Giammaria F, et al. “The INAF-IFSI Plasma Chamber. Ground-based ionospheric plasma simulation: Plasma parameter maps vs. magnetic field”. INAF-IFSI-2010-6, 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Guan, Y., Zheng, X. et al. The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci. 62, 829–838 (2019). https://doi.org/10.1007/s11431-018-9345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9345-8

Keywords

Navigation