Skip to main content
Log in

Development of micro- and nanorobotics: A review

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Micro- and nanorobotic is an emerging field of research arising from the cross-fusion of micro/nano technology and robotics and has become an important part of robotics. Micro- and nanorobots have the advantages of small size, low weight, large thrust-to-weight ratio, high flexibility, and high sensitivity. Due to the characteristics distinguishing from macroscopic robots, micro- and nanorobots have stimulated the research interest of the scientific community and opened up numerous application fields such as drug delivery and disease diagnosis. In the past 30 years, research on micro- and nanorobots has made considerable progress. This article provides a comprehensive overview of the development of these robots. First, the application of the robots is reviewed. Then, the key components of the robots are discussed separately, covering their actuation, design, fabrication and control. In addition, from the perspectives of intelligence and sensing, clinical applications, materials and performance, the challenges that may be encountered in the development of such robots in the future are discussed. Finally, the entire article is summarized, and concepts for future micro- and nanorobots are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sugiyama K, Yokoyama T, Koshiishi T, et al. US Patent, 7822508, 2010–10-26

    Google Scholar 

  2. Kanehiro F, Inaba M, Inoue H. Development of a two-armed bipedal robot that can walk and carry objects. In: The Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Osaka: IEEE, 1996. 23–28

    Google Scholar 

  3. Wu Q, Liu Y J, Wu C S. An overview of current situations of robot industry development. In: The Proceedings of the ITM Web of Conferences. Wuhan: EDP Sciences, 2018

    Google Scholar 

  4. Foglia M M, Reina G. Agricultural robot for radicchio harvesting. J Field Robotics, 2006, 23: 363–377

    Google Scholar 

  5. Beasley R A. Medical robots: Current systems and research directions. Journal of Robotics, 2012, 14

    Google Scholar 

  6. Meng Q, Tholley I, Chung P W H. Robots learn to dance through interaction with humans. Neural Comput Applic, 2014, 24: 117–124

    Google Scholar 

  7. Palacin J, Salse J A, Valganon I, et al. Building a mobile robot for a floor-cleaning operation in domestic environments. IEEE Trans Instrum Meas, 2004, 53: 1418–1424

    Google Scholar 

  8. Playter R, Buehler M, Raibert M. Bigdog. In: The Proceedings of the Unmanned Systems Technology VIII: International Society for Optics and Photonics. Orlando: SPIE-International Society for Optical Engineering, 2006. 62302O

    Google Scholar 

  9. Tagliareni F, Nierlich M, Steinmetz O, et al. Manipulating biological cells with a micro-robot cluster. In: The Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton: IEEE, 2005. 1414–1419

    Google Scholar 

  10. Zhang M J, Tarn T J, Xi N. Micro/nano-devices for controlled drug delivery. In: 2004 IEEE International Conference on Robotics and Automation. IEEE, 2004. 2068–2073

    Google Scholar 

  11. Medina-Sánchez M, Xu H F, Schmidt O G. Micro-and nano-motors: The new generation of drug carriers. Ther Deliv, 2018, 9: 303–316

    Google Scholar 

  12. Chen X Z, Hoop M, Shamsudhin N, et al. Hybrid magnetoelectric nanowires for nanorobotic applications: Fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv Mater, 2017, 29: 1605458

    Google Scholar 

  13. Garcia-Gradilla V, Sattayasamitsathit S, Soto F, et al. Ultrasoundpropelled nanoporous gold wire for efficient drug loading and release. Small, 2014, 10: 4154–4159

    Google Scholar 

  14. Douglas S M, Bachelet I, Church G M. A logic-gated nanorobot for targeted transport of molecular payloads. Science, 2012, 335: 831–834

    Google Scholar 

  15. Fan D, Yin Z, Cheong R, et al. Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat Nanotech, 2010, 5: 545–551

    Google Scholar 

  16. Ullrich F, Bergeles C, Pokki J, et al. Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci, 2013, 54: 2853–2863

    Google Scholar 

  17. Solovev A A, Xi W, Gracias D H, et al. Self-propelled nanotools. ACS Nano, 2012, 6: 1751–1756

    Google Scholar 

  18. Fischer T, Agarwal A, Hess H. A smart dust biosensor powered by kinesin motors. Nat Nanotech, 2009, 4: 162–166

    Google Scholar 

  19. Esteban-Fernández de Á B, Martín A, Soto F, et al. Single cell realtime mirnas sensing based on nanomotors. ACS Nano, 2015, 9: 6756–6764

    Google Scholar 

  20. Davis M E, Chen Z G, Shin D M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov, 2008, 7: 771–782

    Google Scholar 

  21. Verma S K, Chauhan R. Nanorobotics in dentistry–A review. Ind J Dentistry, 2014, 5: 62–70

    Google Scholar 

  22. Cavalcanti A, Shirinzadeh B, Kretly L C. Medical nanorobotics for diabetes control. NanoMed-Nanotechnol Biol Med, 2008, 4: 127–138

    Google Scholar 

  23. Khulbe P. Nanorobots: A review. IJPSR, 2014, 5: 2164–2173

    Google Scholar 

  24. Cavalcanti A, Rosen L, Shirinzadeh B, et al. Nanorobot for treatment of patients with artery occlusion. In: Proceedings of Virtual Concept. Cancun: Springer, 2006

    Google Scholar 

  25. Molchanov P A, Asmolova O. Sense and avoid radar for micro/nano robots. In: Proceedings of the Unmanned/Unattended Sensors and Sensor Networks X. International Society for Optics and Photonics. Amsterdam: SPIE-International Society for Optical Engineering, 2014. 924807

    Google Scholar 

  26. Khurshid J, Bing-Rong H. Military robots-aglimpse from today and tomorrow. In: Proceedings of the Control, Automation, Robotics and Vision Conference. Kunming: IEEE, 2004. 771–777

    Google Scholar 

  27. Rahul V A. A brief review on nanorobots. SSRG-IJME, 2017, 4: 15–21

    Google Scholar 

  28. Sharma N, Mittal R. Nanorobot movement: Challenges and biologically inspired solutions. Int J Smart Sensing Intell Syst, 2008, 1: 87–109

    Google Scholar 

  29. Clayden J, Pink J H. Concerted rotation in a tertiary aromatic amide: Towards a simple molecular gear. Angew Chem Int Ed, 1998, 37: 1937–1939

    Google Scholar 

  30. Fukuda T, Arai F, Lixin Dong F. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc IEEE, 2003, 9: 1803–1818

    Google Scholar 

  31. Li J, Zhang Y, To S, et al. Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity. ACS Nano, 2011, 5: 6661–6668

    Google Scholar 

  32. Ancel A O, Zufferey R, Siddall R, et al. Bio-inspired aquatic micro air vehicle for environmental monitoring and disaster relief. In: The Proceedings of the IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018

    Google Scholar 

  33. Chałupniak A, Morales-Narváez E, Merkoçi A. Micro and nanomotors in diagnostics. Adv Drug Deliver Rev, 2015, 95: 104–116

    Google Scholar 

  34. Drexler K E. Nanosystems: Molecular Machinery, Manufacturing, and Computation. New York: John Wiley & Sons, 1992

    Google Scholar 

  35. Purcell E M. Life at low reynolds number. Am J Phys, 1977, 45: 3–11

    Google Scholar 

  36. Wautelet M. Scaling laws in the macro-, micro- and nanoworlds. Eur J Phys, 2001, 22: 601

    Google Scholar 

  37. Wang Q, Liew K M. Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys Lett A, 2007, 363: 236–242

    Google Scholar 

  38. Y S Song, Sitti M. Surface-tension-driven biologically inspired water strider robots: Theory and experiments. IEEE Trans Robot, 2007, 23: 578–589

    Google Scholar 

  39. Maugis D. Adhesion of spheres: The JKR-DMT transition using a dugdale model. J Colloid Interface Sci, 1992, 150: 243–269

    Google Scholar 

  40. Sitti M, Hashimoto H. Teleoperated touch feedback from the surfaces at the nanoscale: Modeling and experiments. IEEE/ASME Trans Mechatron, 2003, 8: 287–298

    Google Scholar 

  41. Gauthier M, Chaillet N, Régnier S, et al. Analysis of forces for micromanipulations in dry and liquid media. J Micromechatronics, 2006, 3: 389–413

    Google Scholar 

  42. Yang J, Yang Y, Waltermire S W, et al. Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. Nat Nanotech, 2012, 7: 91–95

    Google Scholar 

  43. Pakarinen O H, Foster A S, Paajanen M, et al. Towards an accurate description of the capillary force in nanoparticle-surface interactions. Model Simul Mater Sci Eng, 2005, 13: 1175–1186

    Google Scholar 

  44. Belaidi S, Girard P, Leveque G. Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions. J Appl Phys, 1997, 81: 1023–1030

    Google Scholar 

  45. Gady B, Schleef D, Reifenberger R, et al. Identification of electrostatic and van der Waals interaction forces between a micrometersize sphere and a flat substrate. Phys Rev B, 1996, 53: 8065–8070

    Google Scholar 

  46. Zhou Q, Chang B, Koivo H N. Temperature and humidity effects on micro/nano handling. Mater Sci Forum, 2006, 532–533: 681–684

    Google Scholar 

  47. Tambe N S, Bhushan B. Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants. Nanotechnology, 2004, 15: 1561–1570

    Google Scholar 

  48. Nelson B J, Kaliakatsos I K, Abbott J J. Microrobots for minimally invasive medicine. Annu Rev Biomed Eng, 2010, 12: 55–85

    Google Scholar 

  49. Tottori S, Zhang L, Nelson B J. Wireless Actuation of Micro/nanorobots for Medical Applications. New York: Springer, 2014. 171–189

    Google Scholar 

  50. Li J, Esteban-Fernández de Ávila B, Gao W, et al. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci Robot, 2017, 2: eaam6431

    Google Scholar 

  51. Floyd S, Pawashe C, Sitti M. Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot. IEEE Trans Robot, 2009, 25: 1332–1342

    Google Scholar 

  52. Tottori S, Zhang L, Qiu F, et al. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv Mater, 2012, 24: 811–816

    Google Scholar 

  53. Peyer K E, Tottori S, Qiu F, et al. Magnetic helical micromachines. Chem Eur J, 2013, 19: 28–38

    Google Scholar 

  54. Qiu F, Fujita S, Mhanna R, et al. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv Funct Mater, 2015, 25: 1666–1671

    Google Scholar 

  55. Servant A, Qiu F, Mazza M, et al. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv Mater, 2015, 27: 2981–2988

    Google Scholar 

  56. Hoop M, Ribeiro A S, Rösch D, et al. Mobile magnetic nanocatalysts for bioorthogonal targeted cancer therapy. Adv Funct Mater, 2018

    Google Scholar 

  57. Li T, Li J, Morozov K I, et al. Highly efficient freestyle magnetic nanoswimmer. Nano Lett, 2017, 17: 5092–5098

    Google Scholar 

  58. Diller E, Sitti M. Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv Funct Mater, 2014, 24: 4397–4404

    Google Scholar 

  59. Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotech, 2016, 11: 941–947

    Google Scholar 

  60. Magdanz V, Sanchez S, Schmidt O G. Development of a spermflagella driven micro-bio-robot. Adv Mater, 2013, 25: 6581–6588

    Google Scholar 

  61. Zhang C, Khoshmanesh K, Mitchell A, et al. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem, 2010, 396: 401–420

    Google Scholar 

  62. Fan D L, Zhu F Q, Cammarata R C, et al. Electric tweezers. Nano Today, 2011, 6: 339–354

    Google Scholar 

  63. Donald B R, Levey C G, McGray C D, et al. Power delivery and locomotion of untethered microactuators. J Microelectromech Syst, 2003, 12: 947–959

    Google Scholar 

  64. Donald B R, Levey C G, McGray C D, et al. An untethered, electrostatic, globally controllable MEMS micro-robot. J Microelectromech Syst, 2006, 15: 1–15

    Google Scholar 

  65. Nawroth J C, Lee H, Feinberg A W, et al. A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotechnol, 2012, 30: 792–797

    Google Scholar 

  66. Radisic M, Park H, Shing H, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA, 2004, 101: 18129–18134

    Google Scholar 

  67. Bhana B, Iyer R K, Chen W L K, et al. Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng, 2010, 105: 1148–1160

    Google Scholar 

  68. Ahadian S, Ramón-Azcón J, Ostrovidov S, et al. Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue. Lab Chip, 2012, 12: 3491–3503

    Google Scholar 

  69. Hwang G, Haliyo D S, Régnier S. Remotely powered propulsion of helical nanobelts. In: The Proceedings of the Robotics: Science and Systems VI. Zaragoza: 2010

    Google Scholar 

  70. Vasudev A, Zhe J. A capillary microgripper based on electrowetting. Appl Phys Lett, 2008, 93: 103503

    Google Scholar 

  71. Schaler E, Tellers M, Gerratt A, et al. Toward fluidic microrobots using electrowetting. In: The Proceedings of the IEEE International Conference on Robotics and Automation. Saint Paul: IEEE, 2012. 3461–3466

    Google Scholar 

  72. Rubinsztein-Dunlop H, Freise M E J. Light-driven micromachines. Optics Photonics News, 2002, 13: 22–26

    Google Scholar 

  73. Han D D, Zhang Y L, Ma J N, et al. Light-mediated manufacture and manipulation of actuators. Adv Mater, 2016, 28: 8328–8343

    Google Scholar 

  74. Xu L, Mou F, Gong H, et al. Light-driven micro/nanomotors: From fundamentals to applications. Chem Soc Rev, 2017, 46: 6905–6926

    Google Scholar 

  75. Glückstad J, Palima D, Banas A. Light robotics: Aiming towards alloptical nano-robotics. In: The Proceedings of the Optical Manipulation Conference. International Society for Optics and Photonics. Yokohama: SPIE-International Society for Optical Engineering, 2017. 102520C

    Google Scholar 

  76. Glückstad J, Villangca M, Palima D, et al. Light robotics: An alloptical nano-and micro-toolbox. In: The Proceedings of the Complex Light and Optical Forces XI. International Society for Optics and Photonics. San Francisco: SPIE-International Society for Optical Engineering. 2017. 101201A

    Google Scholar 

  77. Villangca M J, Palima D, Bañas A R, et al. Light-driven micro-tool equipped with a syringe function. Light Sci Appl, 2016, 5: e16148

    Google Scholar 

  78. Chiang P T, Mielke J, Godoy J, et al. Toward a light-driven motorized nanocar: Synthesis and initial imaging of single molecules. ACS Nano, 2011, 6: 592–597

    Google Scholar 

  79. Ibele M, Mallouk T E, Sen A. Schooling behavior of light-powered autonomous micromotors in water. Angew Chem Int Ed, 2009, 48: 3308–3312

    Google Scholar 

  80. Huang C, Lv J, Tian X, et al. A remotely driven and controlled micro-gripper fabricated from light-induced deformation smart material. Smart Mater Struct, 2016, 25: 095009

    Google Scholar 

  81. Ikuta K, Sato F, Kadoguchi K, et al. Optical driven master-slave controllable nano-manipulator with real-time force sensing. In: The Proceedings of the IEEE 21st International Conference on Micro Electro Mechanical Systems. Wuhan: IEEE, 2008. 539–542

    Google Scholar 

  82. Ikeuchi M, Isozaki K, Kyue K, et al. Multifunctional optically driven microrobot for realtime 3D bio-manipulation and imaging. In: The Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems. Cancun: IEEE, 2011. 29–32

    Google Scholar 

  83. Glückstad J. Light driven micro-robotics with holographic 3D tracking. In: The Proceedings of the Optical Pattern Recognition XXVII. International Society for Optics and Photonics. Baltimore: SPIE-International Society for Optical Engineering, 2016. 984503

    Google Scholar 

  84. Huang C, Lv J A, Tian X, et al. Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci Rep, 2015, 5: 17414

    Google Scholar 

  85. Palagi S, Mark A G, Reigh S Y, et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat Mater, 2016, 15: 647–653

    Google Scholar 

  86. Koumura N, Zijlstra R W J, van Delden R A, et al. Light-driven monodirectional molecular rotor. Nature, 1999, 401: 152–155

    Google Scholar 

  87. Rodrigo J A, Alieva T. Light-driven transport of plasmonic nanoparticles on demand. Sci Rep, 2016, 6: 33729

    Google Scholar 

  88. Liu M, Zentgraf T, Liu Y, et al. Light-driven nanoscale plasmonic motors. Nat Nanotech, 2010, 5: 570–573

    Google Scholar 

  89. Hu W, Ishii K S, Ohta A T. Micro-assembly using optically controlled bubble microrobots. Appl Phys Lett, 2011, 99: 094103

    Google Scholar 

  90. Zhang C, Xie S X, Wang W X, et al. Bio-syncretic tweezers actuated by microorganisms: Modeling and analysis. Soft Matter, 2016, 12: 7485–7494

    Google Scholar 

  91. Dai B, Wang J, Xiong Z, et al. Programmable artificial phototactic microswimmer. Nat Nanotech, 2016, 11: 1087–1092

    Google Scholar 

  92. Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci, 2011, 34: 389–412

    Google Scholar 

  93. Deisseroth K. Optogenetics. Nat Methods, 2011, 8: 26–29

    Google Scholar 

  94. Sakar M S, Neal D, Boudou T, et al. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip, 2012, 12: 4976–4985

    Google Scholar 

  95. Kim H, Neal D, Asada H H. Towards the development of optogenetically- controlled skeletal muscle actuators. In: The Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Palo Alto: American Society of Mechanical Engineers, 2013. V002T029A005–V002T029A005

    Google Scholar 

  96. Raman R, Grant L, Seo Y, et al. Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Adv Healthcare Mater, 2017, 6: 1700030

    Google Scholar 

  97. Magdanz V, Stoychev G, Ionov L, et al. Stimuli-responsive microjets with reconfigurable shape. Angew Chem Int Ed, 2014, 53: 2673–2677

    Google Scholar 

  98. Mallea R T, Bolopion A, Beugnot J-C, et al. 1D manipulation of a micrometer size particle actuated via thermocapillary convective flows. In: The Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE, 2017. 408–413

    Google Scholar 

  99. Shirai Y, Osgood A J, Zhao Y, et al. Directional control in thermally driven single-molecule nanocars. Nano Lett, 2005, 5: 2330–2334

    Google Scholar 

  100. Cai K, Yu J, Shi J, et al. Spectrum of temperature-dependent rotational frequency of the rotor in a thermally diven rotary nanomotor. J Phys Chem C, 2017, 121: 16985–16995

    Google Scholar 

  101. Jager E W H. Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation. Science, 2000, 288: 2335–2338

    Google Scholar 

  102. Chan H Y, Li W J. A thermally actuated polymer micro robotic gripper for manipulation of biological cells. In: The Proceedings of the IEEE International Conference on Robotics and Automation. Taipei: IEEE, 2003. 288–293

    Google Scholar 

  103. Gultepe E, Randhawa J S, Kadam S, et al. Biopsy with thermallyresponsive untethered microtools. Adv Mater, 2013, 25: 514–519

    Google Scholar 

  104. Xu T, Xu L P, Zhang X. Ultrasound propulsion of micro-/nanomotors. Appl Mater Today, 2017, 9: 493–503

    Google Scholar 

  105. Ahmed D, Baasch T, Jang B, et al. Artificial swimmers propelled by acoustically activated flagella. Nano Lett, 2016, 16: 4968–4974

    Google Scholar 

  106. Rao K J, Li F, Meng L, et al. A force to be reckoned with: A review of synthetic microswimmers powered by ultrasound. Small, 2015, 11: 2836–2846

    Google Scholar 

  107. Melde K, Mark A G, Qiu T, et al. Holograms for acoustics. Nature, 2016, 537: 518–522

    Google Scholar 

  108. Ding X, Lin S C S, Kiraly B, et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc Natl Acad Sci USA, 2012, 109: 11105–11109

    Google Scholar 

  109. Wang W, Castro L A, Hoyos M, et al. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano, 2012, 6: 6122–6132

    Google Scholar 

  110. Garcia-Gradilla V, Sattayasamitsathit S, Soto F, et al. Ultrasoundpropelled nanoporous gold wire for efficient drug loading and release. Small, 2014, 10: 4154–4159

    Google Scholar 

  111. Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, et al. Functionalized ultrasound-propelled magnetically guided nanomotors: Toward practical biomedical applications. ACS Nano, 2013, 7: 9232–9240

    Google Scholar 

  112. Kwan J J, Myers R, Coviello C M, et al. Ultrasound-propelled nanocups for drug delivery. Small, 2015, 11: 5305–5314

    Google Scholar 

  113. Soto F, Martin A, Ibsen S, et al. Acoustic microcannons: Toward advanced microballistics. ACS Nano, 2015, 10: 1522–1528

    Google Scholar 

  114. Kagan D, Benchimol M J, Claussen J C, et al. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew Chem, 2012, 124: 7637–7640

    Google Scholar 

  115. Wang W, Li S, Mair L, et al. Acoustic propulsion of nanorod motors inside living cells. Angew Chem Int Ed, 2014, 53: 3201–3204

    Google Scholar 

  116. Esteban-Fernández de Ávila B, Angell C, Soto F, et al. Acoustically propelled nanomotors for intracellular sirna delivery. ACS Nano, 2016, 10: 4997–5005

    Google Scholar 

  117. Diller E. Micro-scale mobile robotics. FNT Robotics, 2013, 2: 143–259

    Google Scholar 

  118. Breguet J M, Driesen W, Kaegi F, et al. Applications of piezo-actuated micro-robots in micro-biology and material science. In: The Proceedings of the International Conference on Mechatronics and Automation. Harbin: IEEE, 2007. 57–62

    Google Scholar 

  119. Jain R K, Majumder S, Ghosh B. Design and analysis of piezoelectric actuator for micro gripper. Int J Mech Mater Des, 2015, 11: 253–276

    Google Scholar 

  120. Zubir M N M, Shirinzadeh B, Tian Y. A new design of piezoelectric driven compliant-based microgripper for micromanipulation. Mechanism Machine Theor, 2009, 44: 2248–2264

    MATH  Google Scholar 

  121. Nah S K, Zhong Z W. A microgripper using piezoelectric actuation for micro-object manipulation. Senss Actuators A-Phys, 2007, 133: 218–224

    Google Scholar 

  122. Haddab Y, Chaillet N, Bourjault A. A microgripper using smart piezoelectric actuators. In: The Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu: IEEE, 2000. 659–664

    Google Scholar 

  123. Lee A P, Ciarlo D R, Krulevitch P A, et al. A practical microgripper by fine alignment, eutectic bonding and SMA actuation. Senss Actuators A-Phys, 1996, 54: 755–759

    Google Scholar 

  124. Hoche J H, Buettgenbach S, Pittschellis R, et al. Silicon microgripper for microassembly realized by photolithography and fast anisotropic silicon etching. In: The Proceedings of the Microrobotics and Micromanipulation. International Society for Optics and Photonics. Boston: SPIE-International Society for Optical Engineering, 1998. 13–22

    Google Scholar 

  125. MacKenzie M H, An N M, Giere M D, et al. Experiences with shape memory alloy: Robot grippers for submillimeter hard disk drive components. In: The Proceedings of the Microrobotics: Components and Applications. International Society for Optics and Photonics. Boston: SPIE-International Society for Optical Engineering, 1996. 25–37

    Google Scholar 

  126. Kim B, Lee M G, Lee Y P, et al. An earthworm-like micro robot using shape memory alloy actuator. Senss Actuators A-Phys, 2006, 125: 429–437

    Google Scholar 

  127. Kim B, Lee S, Park J H, et al. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). IEEE/ASME Trans Mechatron, 2005, 10: 77–86

    Google Scholar 

  128. Moo J G S, Pumera M. Chemical energy powered nano/micro/macromotors and the environment. Chem Eur J, 2015, 21: 58–72

    Google Scholar 

  129. Sánchez S, Soler L, Katuri J. Chemically powered micro- and nanomotors. Angew Chem Int Edit, 2015, 54: 1414–1444

    Google Scholar 

  130. Gao W, Sattayasamitsathit S, Wang J. Catalytically propelled micro-/nanomotors: How fast can they move? Chem Rec, 2012, 12: 224–231

    Google Scholar 

  131. Patel G M, Patel G C, Patel R B, et al. Nanorobot: A versatile tool in nanomedicine. J Drug Targeting, 2006, 14: 63–67

    Google Scholar 

  132. Li L, Wang J, Li T, et al. A unified model of drag force for bubble-propelled catalytic micro/nano-motors with different geometries in low reynolds number flows. J Appl Phys, 2015, 117: 104308

    Google Scholar 

  133. Moran J L, Posner J D. Phoretic self-propulsion. Annu Rev Fluid Mech, 2017, 49: 511–540

    MathSciNet  MATH  Google Scholar 

  134. Kagan D, Balasubramanian S, Wang J. Chemically triggered swarming of gold microparticles. Angew Chem Int Ed, 2011, 50: 503–506

    Google Scholar 

  135. Van Nguyen K, Minteer S D. DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors: Toward signal-on motion-based DNA biosensor. Chem Commun, 2015, 51: 4782–4784

    Google Scholar 

  136. Wang L, Li L, Li T, et al. Locomotion of chemically powered autonomous nanowire motors. Appl Phys Lett, 2015, 107: 063102

    Google Scholar 

  137. Sánchez S, Pumera M. Nanorobots: The ultimate wireless self-propelled sensing and actuating devices. Chem Asian J, 2009, 4: 1402–1410

    Google Scholar 

  138. Randhawa J S, Leong T G, Bassik N, et al. Pick-and-place using chemically actuated microgrippers. J Am Chem Soc, 2008, 130: 17238–17239

    Google Scholar 

  139. Bassik N, Brafman A, Zarafshar A M, et al. Enzymatically triggered actuation of miniaturized tools. J Am Chem Soc, 2010, 132: 16314–16317

    Google Scholar 

  140. Teo W Z, Wang H, Pumera M. Beyond platinum: Silver-catalyst based bubble-propelled tubular micromotors. Chem Commun, 2016, 52: 4333–4336

    Google Scholar 

  141. Xu T, Soto F, Gao W, et al. Ultrasound-modulated bubble propulsion of chemically powered microengines. J Am Chem Soc, 2014, 136: 8552–8555

    Google Scholar 

  142. Gao W, Sattayasamitsathit S, Orozco J, et al. Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum microtubes. J Am Chem Soc, 2011, 133: 11862–11864

    Google Scholar 

  143. Solovev A A, Mei Y, Bermúdez Ureña E, et al. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small, 2009, 5: 1688–1692

    Google Scholar 

  144. Li J, Rozen I, Wang J. Rocket science at the nanoscale. ACS Nano, 2016, 10: 5619–5634

    Google Scholar 

  145. Gao W, Pei A, Wang J. Water-driven micromotors. ACS Nano, 2012, 6: 8432–8438

    Google Scholar 

  146. Gibbs J, Zhao Y. Catalytic nanomotors: Fabrication, mechanism, and applications. Front Mater Sci, 2011, 5: 25–39

    Google Scholar 

  147. Bao J, Yang Z, Nakajima M, et al. Self-actuating asymmetric platinum catalytic mobile nanorobot. IEEE Trans Robot, 2014, 30: 33–39

    Google Scholar 

  148. Paxton W F, Kistler K C, Olmeda C C, et al. Catalytic nanomotors: Autonomous movement of striped nanorods. J Am Chem Soc, 2004, 126: 13424–13431

    Google Scholar 

  149. Qin W W, Sun L L, Peng T H, et al. Recent progresses in molecule motors driven by enzymatic reactions. Chin J Anal Chem, 2016, 44: 1133–1139

    Google Scholar 

  150. Wang W, Duan W, Ahmed S, et al. Small power: Autonomous nanoand micromotors propelled by self-generated gradients. Nano Today, 2013, 8: 531–554

    Google Scholar 

  151. Xu T, Soto F, Gao W, et al. Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. J Am Chem Soc, 2015, 137: 2163–2166

    Google Scholar 

  152. Baylis J R, Chan K Y T, Kastrup C J. Halting hemorrhage with selfpropelling particles and local drug delivery. Thrombosis Res, 2016, 141: S36–S39

    Google Scholar 

  153. Wang H, Zhao G, Pumera M. Crucial role of surfactants in bubblepropelled microengines. J Phys Chem C, 2014, 118: 5268–5274

    Google Scholar 

  154. Hosseinidoust Z, Mostaghaci B, Yasa O, et al. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliver Rev, 2016, 106: 27–44

    Google Scholar 

  155. Carlsen R W, Sitti M. Bio-hybrid cell-based actuators for microsystems. Small, 2014, 10: 3831–3851

    Google Scholar 

  156. Tanaka Y, Sato K, Shimizu T, et al. Biological cells on microchips: New technologies and applications. Biosens Bioelectron, 2007, 23: 449–458

    Google Scholar 

  157. Martel S. Bacterial microsystems and microrobots. Biomed Microdevices, 2012, 14: 1033–1045

    Google Scholar 

  158. Zhuang J, Sitti M. Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers. Sci Rep, 2016, 6: 32135

    Google Scholar 

  159. Singh A V, Sitti M. Patterned and specific attachment of bacteria on biohybrid bacteria-driven microswimmers. Adv Healthcare Mater, 2016, 5: 2325–2331

    Google Scholar 

  160. Thubagere A J, Li W, Johnson R F, et al. A cargo-sorting DNA robot. Science, 2017, 357: eaan6558

    Google Scholar 

  161. Darnton N, Turner L, Breuer K, et al. Moving fluid with bacterial carpets. BioPhys J, 2004, 86: 1863–1870

    Google Scholar 

  162. Behkam B, Sitti M. Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl Phys Lett, 2007, 90: 023902

    Google Scholar 

  163. Behkam B, Sitti M. Towards hybrid swimming microrobots: Bacteria assisted propulsion of polystyrene beads. In: The Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2006. 2421–2424

    Google Scholar 

  164. Park B W, Zhuang J, Yasa O, et al. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano, 2017, 11: 8910–8923

    Google Scholar 

  165. Park D, Park S J, Cho S, et al. Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber. Biotechnol Bioeng, 2014, 111: 134–143

    Google Scholar 

  166. Cho S, Park S J, Ko S Y, et al. Development of bacteria-based microrobot using biocompatible poly(ethylene glycol). Biomed Microdevices, 2012, 14: 1019–1025

    Google Scholar 

  167. Kojima M, Zhang Z, Nakajima M, et al. Construction and evaluation of bacteria-driven liposome. Senss Actuators B-Chem, 2013, 183: 395–400

    Google Scholar 

  168. Weibel D B, Garstecki P, Ryan D, et al. Microoxen: Microorganisms to move microscale loads. Proc Natl Acad Sci USA, 2005, 102: 11963–11967

    Google Scholar 

  169. Martel S. Towards MRI-controlled ferromagnetic and MC-1 magnetotactic bacterial carriers for targeted therapies in arteriolocapillar networks stimulated by tumoral angiogenesis. In: The Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society. New York: IEEE, 2006. 3399–3402

    Google Scholar 

  170. Martel S, Mohammadi M. Using a swarm of self-propelled natural microrobots in the form of flagellated bacteria to perform complex micro-assembly tasks. In: The Proceedings of the IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010. 500–505

    Google Scholar 

  171. Hu C, Pané S, Nelson B J. Soft micro- and nanorobotics. Annu Rev Control Robot Auton Syst, 2018, 1: 53–75

    Google Scholar 

  172. Xi J, Schmidt J J, Montemagno C D. Self-assembled microdevices driven by muscle. Nat Mater, 2005, 4: 180–184

    Google Scholar 

  173. Tam D, Hosoi A E. Optimal kinematics and morphologies for spermatozoa. Phys Rev E, 2011, 83: 045303

    Google Scholar 

  174. Magdanz V, Guix M, Schmidt O G. Tubular micromotors: From microjets to spermbots. Robot Biomim, 2014, 1: 11

    Google Scholar 

  175. Magdanz V, Medina-Sánchez M, Chen Y, et al. How to improve spermbot performance. Adv Funct Mater, 2015, 25: 2763–2770

    Google Scholar 

  176. Li D, Choi H, Cho S, et al. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy. Biotechnol Bioeng, 2015, 112: 1623–1631

    Google Scholar 

  177. Gao W, Manesh K M, Hua J, et al. Hybrid nanomotor: A catalytically/magnetically powered adaptive nanowire swimmer. Small, 2011, 7: 2047–2051

    Google Scholar 

  178. Li H, Go G, Ko S Y, et al. Magnetic actuated pH-responsive hydrogel- based soft micro-robot for targeted drug delivery. Smart Mater Struct, 2016, 25: 027001

    Google Scholar 

  179. Ivan I A, Hwang G, Agnus J, et al. First experiments on magpier: A planar wireless magnetic and piezoelectric microrobot. In: The Proceedings of the IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011. 102–108

    Google Scholar 

  180. Li J, Li T, Xu T, et al. Magneto-acoustic hybrid nanomotor. Nano Lett, 2015, 15: 4814–4821

    Google Scholar 

  181. Ahmed D, Dillinger C, Hong A, et al. Artificial acousto-magnetic soft microswimmers. Adv Mater Technol, 2017, 2: 1700050

    Google Scholar 

  182. Fusco S, Sakar M S, Kennedy S, et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv Mater, 2014, 26: 952–957

    Google Scholar 

  183. Zhou D, Ren L, Li Y C, et al. Visible light-driven, magnetically steerable gold/iron oxide nanomotors. Chem Commun, 2017, 53: 11465–11468

    Google Scholar 

  184. Ren L, Zhou D, Mao Z, et al. Rheotaxis of bimetallic micromotors driven by chemical-acoustic hybrid power. ACS Nano, 2017, 11: 10591–10598

    Google Scholar 

  185. Zheng J, Dai B, Wang J, et al. Orthogonal navigation of multiple visible-light-driven artificial microswimmers. Nat Commun, 2017, 8: 1438

    Google Scholar 

  186. Chen L G, Meng F K, Sun F R. Thermodynamic analyses and optimization for thermoelectric devices: The state of the arts. Sci China Tech Sci, 2016, 59: 442–455

    Google Scholar 

  187. Chronis N, Lee L P. Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J Microelectromech Syst, 2005, 14: 857–863

    Google Scholar 

  188. Mølhave K, Hansen O. Electrothermally actuated microgrippers with integrated force-feedback. J Micromech Microeng, 2005, 15: 1265–1270

    Google Scholar 

  189. Sul O J, Falvo M R, Taylor Ii R M, et al. Thermally actuated untethered impact-driven locomotive microdevices. Appl Phys Lett, 2006, 89: 203512

    Google Scholar 

  190. Schalley C A, Beizai K, Vögtle F. On the way to rotaxane-based molecular motors: Studies in molecular mobility and topological chirality. Acc Chem Res, 2001, 34: 465–476

    Google Scholar 

  191. Klapper Y, Sinha N, Ng T W S, et al. A rotational DNA nanomotor driven by an externally controlled electric field. Small, 2010, 6: 44–47

    Google Scholar 

  192. Kim K, Xu X, Guo J, et al. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat Commun, 2014, 5: 3632

    Google Scholar 

  193. Sundararajan S, Lammert P E, Zudans A W, et al. Catalytic motors for transport of colloidal cargo. Nano Lett, 2008, 8: 1271–1276

    Google Scholar 

  194. Kagan D, Calvo-Marzal P, Balasubramanian S, et al. Chemical sensing based on catalytic nanomotors: Motion-based detection of trace silver. J Am Chem Soc, 2009, 131: 12082–12083

    Google Scholar 

  195. Gao W, Sattayasamitsathit S, Manesh K M, et al. Magnetically powered flexible metal nanowire motors. J Am Chem Soc, 2010, 132: 14403–14405

    Google Scholar 

  196. Schoevaars A M, Kruizinga W, Zijlstra R W, et al. Toward a switchable molecular rotor–Unexpected dynamic behavior of functionalized overcrowded alkenes. J Org Chem, 1997, 62: 4943–4948

    Google Scholar 

  197. Fournier-Bidoz S, Arsenault A C, Manners I, et al. Synthetic selfpropelled nanorotors. Chem Commun, 2005, 441–443

    Google Scholar 

  198. Fan D L, Zhu F Q, Cammarata R C, et al. Controllable high-speed rotation of nanowires. Phys Rev Lett, 2005, 94: 247208

    Google Scholar 

  199. Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett, 2009, 9: 2243–2245

    Google Scholar 

  200. Ghosh A, Paria D, Singh H J, et al. Dynamical configurations and bistability of helical nanostructures under external torque. Phys Rev E, 2012, 86: 031401

    Google Scholar 

  201. Muraoka T, Kinbara K, Kobayashi Y, et al. Light-driven open-close motion of chiral molecular scissors. J Am Chem Soc, 2003, 125: 5612–5613

    Google Scholar 

  202. Muraoka T, Kinbara K, Aida T. Mechanical twisting of a guest by a photoresponsive host. Nature, 2006, 440: 512–515

    Google Scholar 

  203. Kelly T R, Sestelo J P, Tellitu I. New molecular devices: In search of a molecular ratchet. J Org Chem, 1998, 63: 3655–3665

    Google Scholar 

  204. Di Leonardo R, Angelani L, Dell’arciprete D, et al. Bacterial ratchet motors. Proc Natl Acad Sci USA, 2010, 107: 9541–9545

    Google Scholar 

  205. Bissell R A, Córdova E, Kaifer A E, et al. A chemically and electrochemically switchable molecular shuttle. Nature, 1994, 369: 133–137

    Google Scholar 

  206. Bedard T C, Moore J S. Design and synthesis of molecular turnstiles.. J Am Chem Soc, 1995, 117: 10662–10671

    Google Scholar 

  207. Badjic J D, Balzani V, Credi A, et al. A molecular elevator. Science, 2004, 303: 1845–1849

    Google Scholar 

  208. Badjic J D, Ronconi C M, Stoddart J F, et al. Operating molecular elevators. J Am Chem Soc, 2006, 128: 1489–1499

    Google Scholar 

  209. Campuzano S, Esteban-Fernández de Ávila B, Yáñez-Sedeño P, et al. Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level. Chem Sci, 2017, 8: 6750–6763

    Google Scholar 

  210. Gimzewski J K, Joachim C, Schlittler R R, et al. Rotation of a single molecule within a supramolecular bearing. Science, 1998, 281: 531–533

    Google Scholar 

  211. Bhushan B. Biomimetics: Lessons from nature–An overview. Philos T R Soc A, 2009, 367: 1445–1486

    Google Scholar 

  212. Cho K J, Koh J S, Kim S, et al. Review of manufacturing processes for soft biomimetic robots. Int J Precis Eng Manuf, 2009, 10: 171–181

    Google Scholar 

  213. Chu W S, Lee K T, Song S H, et al. Review of biomimetic underwater robots using smart actuators. Int J Precis Eng Manuf, 2012, 13: 1281–1292

    Google Scholar 

  214. Dreyfus R, Baudry J, Roper M L, et al. Microscopic artificial swimmers. Nature, 2005, 437: 862–865

    Google Scholar 

  215. Peyer K E, Zhang L, Nelson B J. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale, 2013, 5: 1259–1272

    Google Scholar 

  216. Huang H W, Sakar M S, Petruska A J, et al. Soft micromachines with programmable motility and morphology. Nat Commun, 2016, 7: 12263

    Google Scholar 

  217. Sing C E, Schmid L, Schneider M F, et al. Controlled surface-induced flows from the motion of self-assembled colloidal walkers. Proc Natl Acad Sci USA, 2010, 107: 535–540

    Google Scholar 

  218. Kim S, Lee S, Lee J, et al. Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci Rep, 2016, 6: 30713

    Google Scholar 

  219. Zhang H, Guo D J, Dai Z D. Progress on gecko-inspired micro/nanoadhesion arrays. Chin Sci Bull, 2010, 55: 1843–1850

    Google Scholar 

  220. Lee Y P, Kim B, Lee M G, et al. Locomotive mechanism design and fabrication of biomimetic micro robot using shape memory alloy. In: The Proceedings of the IEEE International Conference on Robotics and Automation. New Orleans: IEEE, 2004. 5007–5012

    Google Scholar 

  221. Li J J, Tan W. A single DNA molecule nanomotor. Nano Lett, 2002, 2: 315–318

    Google Scholar 

  222. Kim B, Lee S, Park J H, et al. Inchworm-like microrobot for capsule endoscope. In: The Proceedings of the IEEE International Conference on Robotics and Biomimetics. Shenyang: IEEE, 2004. 458–463

    Google Scholar 

  223. Karagozler M E, Cheung E, Kwon J, et al. Miniature endoscopic capsule robot using biomimetic micro-patterned adhesives. In: The Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Pisa: IEEE, 2006. 105–111

    Google Scholar 

  224. Menon C, Vincent J, Lan N, et al. Bio-inspired micro-drills for future planetary exploration. In: The Proceedings of the CANEUS 2006: MNT for Aerospace Applications. Toulouse: American Society of Mechanical Engineers, 2006. 117–128

    Google Scholar 

  225. Keennon M, Klingebiel K, Won H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In: The Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville: American Institute of Aeronautics and Astronautics, 2012. 588

    Google Scholar 

  226. S Guo, Fukuda T, Asaka K. A new type of fish-like underwater microrobot. IEEE/ASME Trans Mechatron, 2003, 8: 136–141

    Google Scholar 

  227. Cho K J, Hawkes E, Quinn C, et al. Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish. In: The Proceedings of the IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008. 706–711

    Google Scholar 

  228. Wang Z, Hang G, Wang Y, et al. Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion. Smart Mater Struct, 2008, 17: 025039

    Google Scholar 

  229. Wang Z L, Wang Y W, Li J, et al. A micro biomimetic manta ray robot fish actuated by SMA. In: The Proceedings of the IEEE International Conference on Robotics and Biomimetics. Guilin: IEEE, 2009. 1809–1813

    Google Scholar 

  230. Yang Y C, Ye X F, Guo S X. A new type of jellyfish-like microrobot. In: The Proceedings of the IEEE International Conference on Integration Technology. Shenzhen: IEEE, 2007. 673–678

    Google Scholar 

  231. Guo S X, Shi L W, Ye X F, et al. A new jellyfish type of underwater microrobot. In: The Proceedings of the International Conference on Mechatronics and Automation. Harbin: IEEE, 2007. 509–514

    Google Scholar 

  232. Shi L W, Guo S X, Asaka K. A novel jellyfish-like biomimetic microrobot. In: The Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering. Gold Coast: IEEE, 2010. 277–281

    Google Scholar 

  233. Li T, Li J, Zhang H, et al. Magnetically propelled fish-like nanoswimmers. Small, 2016, 12: 6098–6105

    Google Scholar 

  234. Li J, Liu C, Xu Z, et al. A bio-inspired micropump based on stomatal transpiration in plants. Lab Chip, 2011, 11: 2785–2789

    Google Scholar 

  235. Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 1998, 279: 519–526

    Google Scholar 

  236. Shi L W, Guo S X, Asaka K. A novel multifunctional underwater microrobot. In: The Proceedings of the IEEE International Conference on Robotics and Biomimetics. Tianjin: IEEE, 2010. 873–878

    Google Scholar 

  237. Leong T G, Randall C L, Benson B R, et al. Tetherless thermobiochemically actuated microgrippers. Proc Natl Acad Sci USA, 2009, 106: 703–708

    Google Scholar 

  238. Malachowski K, Jamal M, Jin Q, et al. Self-folding single cell grippers. Nano Lett, 2014, 14: 4164–4170

    Google Scholar 

  239. Ricotti L, Menciassi A. Bio-hybrid muscle cell-based actuators. Biomed Microdevices, 2012, 14: 987–998

    Google Scholar 

  240. Park S J, Gazzola M, Park K S, et al. Phototactic guidance of a tissueengineered soft-robotic ray. Science, 2016, 353: 158–162

    Google Scholar 

  241. Uesugi K, Shimizu K, Akiyama Y, et al. Contractile performance and controllability of insect muscle-powered bioactuator with different stimulation strategies for soft robotics. Soft Robotics, 2016, 3: 13–22

    Google Scholar 

  242. Ricotti L, Trimmer B, Feinberg A W, et al. Biohybrid actuators for robotics: A review of devices actuated by living cells. Sci Robot, 2017, 2: eaaq0495

    Google Scholar 

  243. Patino T, Mestre R, Sánchez S. Miniaturized soft bio-hybrid robotics: A step forward into healthcare applications. Lab Chip, 2016, 16: 3626–3630

    Google Scholar 

  244. Tanaka Y, Noguchi Y, Yalikun Y, et al. Earthworm muscle driven bio-micropump. Senss Actuators B-Chem, 2017, 242: 1186–1192

    Google Scholar 

  245. Tanaka Y, Morishima K, Shimizu T, et al. An actuated pump on-chip powered by cultured cardiomyocytes. Lab Chip, 2006, 6: 362–368

    Google Scholar 

  246. Tanaka Y, Morishima K, Shimizu T, et al. Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars. Lab Chip, 2006, 6: 230–235

    Google Scholar 

  247. Williams B J, Anand S V, Rajagopalan J, et al. A self-propelled biohybrid swimmer at low reynolds number. Nat Commun, 2014, 5: 3081

    Google Scholar 

  248. Cvetkovic C, Raman R, Chan V, et al. Three-dimensionally printed biological machines powered by skeletal muscle. Proc Natl Acad Sci USA, 2014, 111: 10125–10130

    Google Scholar 

  249. Raman R, Cvetkovic C, Uzel S G M, et al. Optogenetic skeletal muscle-powered adaptive biological machines. Proc Natl Acad Sci USA, 2016, 113: 3497–3502

    Google Scholar 

  250. Magdanz V, Medina-Sánchez M, Schwarz L, et al. Spermatozoa as functional components of robotic microswimmers. Adv Mater, 2017, 29

    Google Scholar 

  251. Carlsen R W, Edwards M R, Zhuang J, et al. Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip, 2014, 14: 3850–3859

    Google Scholar 

  252. Medina-Sánchez M, Schwarz L, Meyer A K, et al. Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors. Nano Lett, 2015, 16: 555–561

    Google Scholar 

  253. Wang H, Pumera M. Fabrication of micro/nanoscale motors. Chem Rev, 2015, 115: 8704–8735

    Google Scholar 

  254. Stanton M M, Trichet-Paredes C, Sánchez S. Applications of threedimensional (3D) printing for microswimmers and bio-hybrid robotics. Lab Chip, 2015, 15: 1634–1637

    Google Scholar 

  255. Horiguchi H, Imagawa K, Hoshino T, et al. Fabrication and evaluation of reconstructed cardiac tissue and its application to bioactuated microdevices. IEEE Transon NanoBiosci, 2009, 8: 349–355

    Google Scholar 

  256. Yang W G, Yu H B, Li G X, et al. High-throughput fabrication and modular assembly of 3D heterogeneous microscale tissues. Small, 2017, 13

    Google Scholar 

  257. Kim S, Qiu F, Kim S, et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater, 2013, 25: 5863–5868

    Google Scholar 

  258. Pokki J, Ergeneman O, Sivaraman K M, et al. Electroplated porous polypyrrole nanostructures patterned by colloidal lithography for drug-delivery applications. Nanoscale, 2012, 4: 3083–3088

    Google Scholar 

  259. Hu C, Aeschlimann F, Chatzipirpiridis G, et al. Spatiotemporally controlled electrodeposition of magnetically driven micromachines based on the inverse opal architecture. Electrochem Commun, 2017, 81: 97–101

    Google Scholar 

  260. Bertsch A, Bernhard P, Renaud P. Microstereolithography: Concepts and applications. In: The Proceedings of the 8th International Conference on Emerging Technologies and Factory Automation. Antibes- Juan les Pins: IEEE, 2001. 289–298

    Google Scholar 

  261. Choi J W, MacDonald E, Wicker R. Multi-material microstereolithography. Int J Adv Manuf Technol, 2010, 49: 543–551

    Google Scholar 

  262. Lan P X, Lee J W, Seol Y J, et al. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci-Mater Med, 2009, 20: 271–279

    Google Scholar 

  263. Gao W, Feng X, Pei A, et al. Bioinspired helical microswimmers based on vascular plants. Nano Lett, 2013, 14: 305–310

    Google Scholar 

  264. Wang Y, Fei S, Byun Y M, et al. Dynamic interactions between fast microscale rotors. J Am Chem Soc, 2009, 131: 9926–9927

    Google Scholar 

  265. Gibbs J G, Zhao Y P. Design and characterization of rotational multicomponent catalytic nanomotors. Small, 2009, 5: 2304–2308

    Google Scholar 

  266. He Y, Wu J, Zhao Y. Designing catalytic nanomotors by dynamic shadowing growth. Nano Lett, 2007, 7: 1369–1375

    Google Scholar 

  267. Zeeshan M A, Grisch R, Pellicer E, et al. Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. Small, 2014, 10: 1284–1288

    Google Scholar 

  268. Wang H, Sofer Z, Eng A Y S, et al. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading. Chem Eur J, 2014, 20: 14946–14950

    Google Scholar 

  269. Wu Z, Li T, Li J, et al. Turning erythrocytes into functional micromotors. ACS Nano, 2014, 8: 12041–12048

    Google Scholar 

  270. Soong R K, Bachand G D, Neves H P, et al. Powering an inorganic nanodevice with a biomolecular motor. Science, 2000, 290: 1555–1558

    Google Scholar 

  271. Golod S V, Prinz V Y, Mashanov V I, et al. Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils. Semicond Sci Technol, 2001, 16: 181–185

    Google Scholar 

  272. Schmidt O G, Eberl K. Thin solid films roll up into nanotubes. Nature, 2001, 410: 168

    Google Scholar 

  273. Bell D J, Dong L, Nelson B J, et al. Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings. Nano Lett, 2006, 6: 725–729

    Google Scholar 

  274. Zhang L, Abbott J J, Dong L, et al. Artificial bacterial flagella: Fabrication and magnetic control. Appl Phys Lett, 2009, 94: 064107

    Google Scholar 

  275. Filipiak D J, Azam A, Leong T G, et al. Hierarchical self-assembly of complex polyhedral microcontainers. J Micromech Microeng, 2009, 19: 075012

    Google Scholar 

  276. Mirkovic T, Foo M L, Arsenault A C, et al. Hinged nanorods made using a chemical approach to flexible nanostructures. Nat Nanotech, 2007, 2: 565–569

    Google Scholar 

  277. Wu Z, Wu Y, He W, et al. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed, 2013, 52: 7000–7003

    Google Scholar 

  278. Wu Z, Lin X, Wu Y, et al. Near-infrared light-triggered “on/off” motion of polymer multilayer rockets. ACS Nano, 2014, 8: 6097–6105

    Google Scholar 

  279. Wu Z, Gao C, Frueh J, et al. Remote-controllable explosive polymer multilayer tubes for rapid cancer cell killing. Macromol Rapid Commun, 2015, 36: 1444–1449

    Google Scholar 

  280. Lin X, Wu Z, Wu Y, et al. Self-propelled micro-/nanomotors based on controlled assembled architectures. Adv Mater, 2016, 28: 1060–1072

    Google Scholar 

  281. Khalil I S M, Dijkslag H C, Abelmann L, et al. Magnetosperm: A microrobot that navigates using weak magnetic fields. Appl Phys Lett, 2014, 104: 223701

    Google Scholar 

  282. Rajagopalan J, Saif M T A. Fabrication of freestanding 1-D PDMS microstructures using capillary micromolding. J Microelectromech Syst, 2013, 22: 992–994

    Google Scholar 

  283. Chen K, Gu C, Yang Z, et al. “Z”-shaped rotational Au/Pt micronanorobot. Micromachines, 2017, 8: 183

    Google Scholar 

  284. Hong Y, Velegol D, Chaturvedi N, et al. Biomimetic behavior of synthetic particles: From microscopic randomness to macroscopic control. Phys Chem Chem Phys, 2010, 12: 1423–1435

    Google Scholar 

  285. Zhou D, Li Y C, Xu P, et al. Visible-light controlled catalytic Cu2O–Au micromotors. Nanoscale, 2017, 9: 75–78

    Google Scholar 

  286. Zhou D, Li Y C, Xu P, et al. Visible-light driven Si-Au micromotors in water and organic solvents. Nanoscale, 2017, 9: 11434–11438

    Google Scholar 

  287. Ahmed S, Wang W, Mair L O, et al. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir, 2013, 29: 16113–16118

    Google Scholar 

  288. Li T, Chang X, Wu Z, et al. Autonomous collision-free navigation of microvehicles in complex and dynamically changing environments. ACS Nano, 2017, 11: 9268–9275

    Google Scholar 

  289. Kim D H, Cheang U K, Kőhidai L, et al. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: A tool for fabrication of microbiorobots. Appl Phys Lett, 2010, 97: 173702

    Google Scholar 

  290. Pawashe C, Floyd S, Sitti M. Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robotics Res, 2009, 28: 1077–1094

    Google Scholar 

  291. Floyd S, Diller E, Pawashe C, et al. Control methodologies for a heterogeneous group of untethered magnetic micro-robots. Int J Robotics Res, 2011, 30: 1553–1565

    Google Scholar 

  292. Diller E, Floyd S, Pawashe C, et al. Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Trans Robot, 2012, 28: 172–182

    Google Scholar 

  293. Solovev A A, Sanchez S, Pumera M, et al. Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv Funct Mater, 2010, 20: 2430–2435

    Google Scholar 

  294. Baraban L, Harazim S M, Sanchez S, et al. Chemotactic behavior of catalytic motors in microfluidic channels. Angew Chem, 2013, 125: 5662–5666

    Google Scholar 

  295. Hong Y, Blackman N M K, Kopp N D, et al. Chemotaxis of nonbiological colloidal rods. Phys Rev Lett, 2007, 99: 178103

    Google Scholar 

  296. Laocharoensuk R, Burdick J, Wang J. Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano, 2008, 2: 1069–1075

    Google Scholar 

  297. Wang W, Duan W, Zhang Z, et al. A tale of two forces: Simultaneous chemical and acoustic propulsion of bimetallic micromotors. Chem Commun, 2015, 51: 1020–1023

    Google Scholar 

  298. Li L, Wang J, Li T, et al. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: Model and experiment. Soft Matter, 2014, 10: 7511–7518

    Google Scholar 

  299. Pappas I, Codourey A. Visual control of a microrobot operating under a microscope. In: The Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Osaka: IEEE, 1996. 993–1000

    Google Scholar 

  300. Kim K, Liu X, Zhang Y, et al. Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J Micromech Microeng, 2008, 18: 055013

    Google Scholar 

  301. Diller E, Giltinan J, Sitti M. Independent control of multiple magnetic microrobots in three dimensions. Int J Robotics Res, 2013, 32: 614–631

    Google Scholar 

  302. Yang G Z, Bellingham J, Dupont P E, et al. The grand challenges of science robotics. Sci Robot, 2018, 3: eaar7650

    Google Scholar 

  303. Zhang C, Wang W, Xi N, et al. Development and future challenges of bio-syncretic robots. Engineering, 2018, 4: 452–463

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to WenXue Wang or LianQing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhang, C., Wang, X. et al. Development of micro- and nanorobotics: A review. Sci. China Technol. Sci. 62, 1–20 (2019). https://doi.org/10.1007/s11431-018-9339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9339-8

Keywords

Navigation