Skip to main content
Log in

Improved electrochemical performance of LiFe0.65Mn0.35PO4 cathode material by using electrolytic manganese dioxide for lithium-ion battery

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The olivine-type structure LiFe0.65Mn0.35PO4 materials are respectively synthesized via MnO2 and MnC2O4·2H2O as manganese resources by using solid-state reaction. The compound materials are characterized by scanning electron microscopies (SEM), transmission electron microscopy (TEM), X-ray photoelectronspectroscopy (XPS) and electrochemical test. The experimental results demonstrate that LiFe0.65Mn0.35PO4 prepared by MnO2 as manganese resource exhibits uniform particles with porous structure in SEM and TEM images. XPS data show the coexistence of Mn4+, Mn3+ and Mn2+ cations. Besides, this sample shows better discharge special capacity of 107.46 mA h g–1 at 5 C and capacitance conservation rate about 95.47% after 100 cycles at 1 C. The superior electrochemical capability is attributed to the coexistence of mixed-valence manganese cations in crystal and the uniform particles with porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padhi A K. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188–1194

    Article  Google Scholar 

  2. Wang Y, Wang Y, Hosono E, et al. The design of a LiFePO4/Carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed, 2008, 47: 7461–7465

    Article  Google Scholar 

  3. Sun C, Rajasekhara S, Goodenough J B, et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J Am Chem Soc, 2011, 133: 2132–2135

    Article  Google Scholar 

  4. Saravanan K, Balaya P, Reddy M V, et al. Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energy Environ Sci, 2010, 3: 457–464

    Article  Google Scholar 

  5. Nan C, Lu J, Chen C, et al. Solvothermal synthesis of lithium iron phosphate nanoplates. J Mater Chem, 2011, 21: 9994–9996

    Article  Google Scholar 

  6. Ma Z, Shao G, Wang G, et al. Electrochemical performance of Mo-doped LiFePO4/C composites prepared by two-step solid-state reaction. Ionics, 2013, 19: 437–443

    Article  Google Scholar 

  7. Fang H, Liang G, Zhao L, et al. Electrochemical properties of cathode material LiFePO4 with Ti substitution. J Electrochem Soc, 2013, 160: A3148–A3152

    Article  Google Scholar 

  8. Moretti A, Giuli G, Nobili F, et al. Structural and electrochemical characterization of vanadium-doped LiFePO4 cathodes for lithiumion batteries. J Electrochem Soc, 2013, 160: A940–A949

    Article  Google Scholar 

  9. Zhang P, Wang Y, Lin M, et al. Doping effect of Nb5+ on the microstructure and defects of LiFePO4. J Electrochem Soc, 2012, 159: A402

    Article  Google Scholar 

  10. Li C, Hua N, Wang C, et al. Effect of Mn2+-doping in LiFePO4 and the low temperature electrochemical performances. J Alloys Compd, 2011, 509: 1897–1900

    Article  Google Scholar 

  11. Liu Q, Liu Z, Xiao G, et al. Enhancement of capacity at high charge/discharge rate and cyclic stability of LiFePO4/C by nickel doping. Ionics, 2013, 19: 445–450

    Article  Google Scholar 

  12. Čech O, Thomas J E, Visintin A, et al. Cobalt doped LiFePO4/C composite material for Li-ion cathodes. ECS Trans, 2012, 40: 93–98

    Google Scholar 

  13. Wang B, Xu B, Liu T, et al. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Nanoscale, 2012, 6: 986–995

    Article  Google Scholar 

  14. Huang X, Liang F, Du Y, et al. Optimization of the process parameters for the synthesis of LiFe1−xy Mgx Tiy PO4/C cathode material using response surface methodology. Nano, 2016, 11: 1650122

    Article  Google Scholar 

  15. Wang H, Yang Y, Liang Y, et al. LiMn1−x FexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed, 2011, 50: 7364–7368

    Article  Google Scholar 

  16. Yamada A, Chung S C. Crystal chemistry of the olivine-type Li(MnyFe1−y )PO4 and (MnyFe1−y )PO4 as possible 4 V cathode materials for lithium batteries. J Electrochem Soc, 2001, 148: 960–967

    Article  Google Scholar 

  17. Dinh H C, Mho S, Kang Y, et al. Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes. J Power Sources, 2013, 244: 189–195

    Article  Google Scholar 

  18. Delacourt C, Poizot P, Morcrette M, et al. One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem Mater, 2004, 16: 93–99

    Article  Google Scholar 

  19. Fisher C A J, Hart Prieto V M, Islam M S. Lithium battery materials LiMPO4 (M=Mn, Fe, Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior. Chem Mater, 2008, 20: 5907–5915

    Article  Google Scholar 

  20. Chen K, Pan W, Xue D. Phase transformation of Ce3+-doped MnO2 for pseudocapacitive electrode materials. J Phys Chem C, 2016, 120: 20077–20081

    Article  Google Scholar 

  21. Chen K, Dong Noh Y, Li K, et al. Microwave-hydrothermal crystallization of polymorphic MnO2 for electrochemical energy storage. J Phys Chem C, 2013, 117: 10770–10779

    Article  Google Scholar 

  22. Zhang Y, Sun C, Lu P, et al. Crystallization design of MnO2 towards better supercapacitance. Cryst Eng Comm, 2014, 14: 5892–5897

    Article  Google Scholar 

  23. Ghodbane O, Pascal J L, Favier F. Microstructural effects on chargestorage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces, 2009, 1: 1130–1139

    Article  Google Scholar 

  24. Wang Y, Lai W, Wang N, et al. A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energy Environ Sci, 2017, 10: 941–949

    Article  Google Scholar 

  25. Xu C, Du H, Li B, et al. Capacitive behavior and charge storage mechanism of manganese dioxide in aqueous solution containing bivalent cations. J Electrochem Soc, 2009, 156: A73

    Article  Google Scholar 

  26. Paolella A, Bertoni G, Dilena E, et al. Redox centers evolution in phospho-olivine type (LiFe0.5 Mn0.5PO4 ) nanoplatelets with uniform cation distribution. Nano Lett, 2014, 14: 1477–1483

    Article  Google Scholar 

  27. Dedryvère R, Maccario M, Croguennec L, et al. X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4 materials. Chem Mater, 2008, 20: 7164–7170

    Article  Google Scholar 

  28. Lv C, Duan X, Deng J, et al. LiFePO4 mesocrystals coated with N-doped carbon from an ionic liquid for Li-ion batteries. Cryst Eng Comm, 2017, 19: 1253–1257

    Article  Google Scholar 

  29. Peng W, Jiao L, Gao H, et al. A novel sol-gel method based on FePO4·2H2O to synthesize submicrometer structured LiFePO4/C cathode material. J Power Sources, 2011, 196: 2841–2847

    Article  Google Scholar 

  30. Hu Y, Zhang T, Cheng F, et al. Recycling application of Li-MnO2 batteries as rechargeable lithium-air batteries. Angew Chem, 2015, 127: 4412–4417

    Article  Google Scholar 

  31. Liu Q L, Wang S P, Cheng H. High rate capabilities Fe-doped EMD electrodes for Li/MnO2 primary battery. Int J Electrochem Sci, 2013, 8: 10540–10548

    Google Scholar 

  32. Cui Y, Zhao X, Guo R. Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process. Electrochim Acta, 2010, 55: 922–926

    Article  Google Scholar 

  33. Zhao J, He J, Zhou J, et al. Facile synthesis for LiFePO4 nanospheres in tridimensional porous carbon framework for lithium ion batteries. J Phys Chem C, 2011, 115: 2888–2894

    Article  Google Scholar 

  34. Yu D Y W, Fietzek C, Weydanz W, et al. Study of LiFePO4 by cyclic voltammetry. J Electrochem Soc, 2007, 154: A253

    Article  Google Scholar 

  35. Jin B, Jin E M, Park K H, et al. Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery. Electrochem Commun, 2008, 10: 1537–1540

    Article  Google Scholar 

  36. Li J, Qu Q, Zhang L, et al. A monodispersed nano-hexahedral LiFePO4 with improved power capability by carbon-coatings. J Alloys Compd, 2013, 579: 377–383

    Article  Google Scholar 

  37. Chen J, Zhao N, Li G D, et al. Superior performance of LiFePO4/C with porous structure synthesized by an in situ polymerization restriction method for lithium ion batteries. Mater Chem Phys, 2016, 180: 244–249

    Article  Google Scholar 

  38. Chen K F, Xue D F. Rare earth and transitional metal colloidal supercapacitors. Sci China Tech Sci, 2015, 58: 1768–1778

    Google Scholar 

  39. Liu F, Xue D F. Electrochemical energy storage applications of “pristine” graphene produced by non-oxidative routes. Sci China Tech Sci, 2015, 58: 1841–1850

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaoChun Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Lu, J., Huang, X. et al. Improved electrochemical performance of LiFe0.65Mn0.35PO4 cathode material by using electrolytic manganese dioxide for lithium-ion battery. Sci. China Technol. Sci. 60, 1853–1860 (2017). https://doi.org/10.1007/s11431-017-9153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9153-x

Keywords

Navigation