Skip to main content
Log in

Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The effects of C element on the microstructure and properties of CoCrFeNiC x high entropy alloys ( x denoted the atomic fraction of C element at 0, 0.05, 0.1, 0.2, 0.3, and 0.5) were investigated. The equal molar CoCrFeNi alloy with FCC structure exhibits high ductility but weak strength. With the addition of C element, both the hardness and strength of the CoCrFeNiC x high entropy alloys increase as well as the wear resistance. The solution strengthening and the formation of hard carbide phase are the main factor for the improved strength, hardness and wear resistance of CoCrFeNiC x high entropy alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6: 299–303

    Article  Google Scholar 

  2. Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng-A, 2004, 375–377: 213–218

    Article  Google Scholar 

  3. Lu Z P, Wang H, Chen M W, et al. An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics, 2015, 66: 67–76

    Article  Google Scholar 

  4. Gao M C, Yeh J W, Liaw P K, et al. High-Entropy Alloys-Fundamentals and Applications. Berlin: Springer, 2016

    Book  Google Scholar 

  5. Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345: 1153–1158

    Article  Google Scholar 

  6. Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016, 10: 227–230

    Article  Google Scholar 

  7. Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1–93

    Article  Google Scholar 

  8. Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci Rep, 2015, 4: 6200

    Article  Google Scholar 

  9. Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater, 2016, 116: 332–342

    Article  Google Scholar 

  10. Zhang Y, Zhou Y J, Hui X D, et al. Minor alloying behavior in bulk metallic glasses and high-entropy alloys. Sci China Ser G-Phys Mech Astron, 2008, 51: 427–437

    Google Scholar 

  11. Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog Nat Sci-Mater Int, 2011, 21: 433–446

    Article  Google Scholar 

  12. Qiao J W, Wang Z, Ren L W, et al. Enhancement of mechanical and electrochemical properties of Al0.25CrCoFe1.25Ni1.25 high-entropy alloys by coating Ni-P amorphous films. Mater Sci Eng-A, 2016, 657: 353–358

    Article  Google Scholar 

  13. Ding Z Y, He Q F, Yang Y. Exploring the design of eutectic or neareutectic multicomponent alloys: From binary to high entropy alloys. Sci China Technol Sci, 2017, 32

    Google Scholar 

  14. Senkov O N, Senkova S V, Dimiduk D M, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J Mater Sci, 2012, 47: 6522–6534

    Article  Google Scholar 

  15. Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater, 2011, 59: 6308–6317

    Article  Google Scholar 

  16. Butler T, Weaver M. Influence of annealing on the microstructures and oxidation behaviors of A18(CoCrFeNi)92, Al15(CoCrFeNi)85, and Al30(CoCrFeNi)70 high-entropy alloys. Metals, 2016, 6: 222

    Article  Google Scholar 

  17. Vrtnik S, Koželj P, Meden A, et al. Superconductivity in thermally annealed Ta-Nb-Hf-Zr-Ti high-entropy alloys. J Alloys Compd, 2017, 695: 3530–3540

    Article  Google Scholar 

  18. Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys, 2011, 109: 103505–103505

    Article  Google Scholar 

  19. Joseph J, Jarvis T, Wu X, et al. Comparative study of the microstructures and mechanical properties of direct laser fabricated and arcmelted AlxCoCrFeNi high entropy alloys. Mater Sci Eng-A, 2015, 633: 184–193

    Article  Google Scholar 

  20. Yang T, Xia S, Liu S, et al. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation. Sci Rep, 2016, 6: 32146

    Article  Google Scholar 

  21. Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCr-FeMnNi high-entropy alloy after severe plastic deformation. Acta Mater, 2015, 96: 258–268

    Article  Google Scholar 

  22. Pickering E J, Muñoz-Moreno R, Stone H J, et al. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scripta Mater, 2016, 113: 106–109

    Article  Google Scholar 

  23. Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 2015, 60: 1–8

    Article  Google Scholar 

  24. Kong K H, Kim K C, Kim W T, et al. Microstructural features of multicomponent FeCoCrNiSix alloys. Appl Micro, 2015, 45: 32–36

    Article  Google Scholar 

  25. Jiang L, Lu Y, Dong Y, et al. Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot. Intermetallics, 2014, 44: 37–43

    Article  Google Scholar 

  26. Salishchev G A, Tikhonovsky M A, Shaysultanov D G, et al. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. J Alloys Compd, 2014, 591: 11–21

    Article  Google Scholar 

  27. Chen Q, Lu Y, Dong Y, et al. Effect of minor B addition on microstructure and properties of AlCoCrFeNi multi-compenent alloy. Trans Nonferrous Met Soc China, 2015, 25: 2958–2964

    Article  Google Scholar 

  28. Sheng W, Yang X, Wang C, et al. Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering. Entropy, 2016, 18: 226

    Article  Google Scholar 

  29. Fang S, Chen W, Fu Z. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater Des (1980–2015), 2014, 54: 973–979

    Article  Google Scholar 

  30. Shun T T, Du Y C. Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy. J Alloys Compd, 2009, 478: 269–272

    Article  Google Scholar 

  31. Guo N N, Wang L, Luo L S, et al. Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite. Intermetallics, 2016, 69: 74–77

    Article  Google Scholar 

  32. Stepanov N D, Yurchenko N Y, Tikhonovsky M A, et al. Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys. J Alloys Compd, 2016, 687: 59–71

    Article  Google Scholar 

  33. Zhu J M, Fu H M, Zhang H F, et al. Microstructure and compressive properties of multiprincipal component AlCoCrFeNiCx alloys. J Alloys Compd, 2011, 509: 3476–3480

    Article  Google Scholar 

  34. Wang Z, Baker I, Cai Z, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Mater, 2016, 120: 228–239

    Article  Google Scholar 

  35. Stepanov N D, Shaysultanov D G, Chernichenko R S, et al. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy. J Alloys Compd, 2017, 693: 394–405

    Article  Google Scholar 

  36. Wang P, Cai H, Zhou S, et al. Processing, microstructure and properties of Ni1.5CoCuFeCr0.5−xVx high entropy alloys with carbon introduced from process control agent. J Alloys Compd, 2017, 695: 462–475

    Article  Google Scholar 

  37. Poletti M G, Fiore G, Gili F, et al. Development of a new high entropy alloy for wear resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3 +5at.% of C. Mater Des, 2017, 115: 247–254

    Article  Google Scholar 

  38. Xie J, Chen N, Shen J, et al. Atomistic study on the structure and thermodynamic properties of Cr7C3, Mn7C3, Fe7C3. Acta Mater, 2005, 53: 2727–2732

    Article  Google Scholar 

  39. Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans, 2005, 46: 2817–2829

    Article  Google Scholar 

  40. Wang Y, Yang Y, Yang H, et al. Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater Chem Phys, 2017

    Google Scholar 

  41. Liu Y, Ma S, Gao M C, et al. Erratum to: Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions. Metall Mat Trans A, 2016, 47: 3781–3781

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YiPing Lu or TingJu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Jiang, L., Zhang, C. et al. Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Sci. China Technol. Sci. 61, 117–123 (2018). https://doi.org/10.1007/s11431-017-9134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9134-6

Keywords

Navigation