Science China Technological Sciences

, Volume 61, Issue 2, pp 299–308 | Cite as

Finite-time stabilization of switched dynamical networks with quantized couplings via quantized controller



This paper concerns the stabilization of switched dynamical networks with logarithmic quantization couplings in a settling time. The switching sequence is constrained by hybrid dwell time. Controller is designed by using limited information. Due to the quantization and switching, traditional finite-time analysis methods cannot be utilized directly. By designing multiple Lyapunov functions and constructing comparison systems, a general criterion formulated by matrix inequalities is first given. Then specific conditions in terms of linear matrix inequalities are established by partitioning the dwell time and using convex combination technique. An optimal algorithm is proposed for the estimation of settling time. Numerical simulations are given to verify the effectiveness of the theoretical results.


dwell time finite time quantized couplings quantized controller switching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duan Z, Wang J, Chen G, et al. Stability analysis and decentralized control of a class of complex dynamical networks. Automatica, 2008, 44: 1028–1035MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Lu J, Ho DWC, Wu L. Exponential stabilization of switched stochastic dynamical networks. Nonlinearity, 2009, 22: 889–911MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Wang Y, Fan Y, Wang Q, et al. Stabilization and synchronization of complex dynamical networks with different dynamics of nodes via decentralized controllers. IEEE Trans Circuits Syst I, 2012, 59: 1786–1795MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yu J, Sun G. Robust stabilization of stochastic Markovian jumping dynamical networks with mixed delays. Neurocomputing, 2012, 86: 107–115CrossRefGoogle Scholar
  5. 5.
    Chen W H, Lu X M, Wei X Z. Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks. IEEE Trans Neural Netw Learning Syst, 2015, 26: 734–748MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhang G, Shen Y. Exponential stabilization of memristor-based chaotic neural networks with time-varying delays via intermittent control. IEEE Trans Neural Netw Learning Syst, 2015, 26: 1431–1441MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liu Y, Cao J, Sun L, et al. Sampled-data state feedback stabilization of boolean control networks. Neural Comput, 2016, 28: 778–799CrossRefGoogle Scholar
  8. 8.
    Yang X, Ho D W C, Lu J, et al. Finite-time cluster synchronization of T-S fuzzy complex networks with discontinuous subsystems and random coupling delays. IEEE Trans Fuzzy Syst, 2015, 23: 2302–2316CrossRefGoogle Scholar
  9. 9.
    Fan H W, Wang Y F, Chen M J, et al. Chaos synchronization with dual-channel time-delayed couplings. Sci China Tech Sci, 2016, 59: 428–435CrossRefGoogle Scholar
  10. 10.
    Rakkiyappan R, Sasirekha R. Asymptotic synchronization of continuous/ discrete complex dynamical networks by optimal partitioning method. Complexity, 2015, 21: 193–210MathSciNetCrossRefGoogle Scholar
  11. 11.
    Han Q K, Sun X Y, Yang X G, et al. External synchronization of two dynamical systems with uncertain parameters. Sci China Tech Sci, 2010, 53: 731–740CrossRefMATHGoogle Scholar
  12. 12.
    Li T T. From phenomena of synchronization to exact synchronization and approximate synchronization for hyperbolic systems. Sci China Math, 2016, 59: 1–18MathSciNetMATHGoogle Scholar
  13. 13.
    Sorrentino F, Pecora L M, Hagerstrom A M, et al. Complete characterization of the stability of cluster synchronization in complex dynamical networks. Sci Adv, 2016, 2: e1501737CrossRefGoogle Scholar
  14. 14.
    Yang X, Lu J. Finite-time synchronization of coupled networks with Markovian topology and impulsive effects. IEEE Trans Automat Contr, 2016, 61: 2256–2261MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Li H, Liao X, Chen G, et al. Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks. Neural Netw, 2015, 66: 1–10CrossRefGoogle Scholar
  16. 16.
    Huang N, Duan Z S, Zhao Y. Distributed consensus for multiple Euler-Lagrange systems: An event-triggered approach. Sci China Tech Sci, 2016, 59: 33–44CrossRefGoogle Scholar
  17. 17.
    Ceragioli F, De Persis C, Frasca P. Discontinuities and hysteresis in quantized average consensus. Automatica, 2011, 47: 1916–1928MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Li L, Ho D W C, Lu J. A unified approach to practical consensus with quantized data and time delay. IEEE Trans Circuits Syst I, 2013, 60: 2668–2678MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liu S, Li T, Xie L, et al. Continuous-time and sampled-data-based average consensus with logarithmic quantizers. Automatica, 2013, 49: 3329–3336MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Liu M, Cao X, Zhang S, et al. Sliding mode control of quantized systems against bounded disturbances. Inf Sci, 2014, 274: 261–272MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Shi P, Liu M, Zhang L. Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements. IEEE Trans Ind Electron, 2015, 62: 5910–5918CrossRefGoogle Scholar
  22. 22.
    Xiao N, Xie L, Fu M. Stabilization of Markov jump linear systems using quantized state feedback. Automatica, 2010, 46: 1696–1702MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Liberzon D. Finite data-rate feedback stabilization of switched and hybrid linear systems. Automatica, 2014, 50: 409–420MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Cao J D, Rakkiyappan R, Maheswari K, et al. Exponential H filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities. Sci China Tech Sci, 2016, 59: 387–402CrossRefGoogle Scholar
  25. 25.
    Hetel L, Daafouz J, Iung C. Stabilization of arbitrary switched linear systems with unknown time-varying delays. IEEE Trans Automat Contr, 2006, 51: 1668–1674MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Daafouz J, Riedinger P, Iung C. Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach. IEEE Trans Automat Contr, 2002, 47: 1883–1887MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Xiang W, Xiao J. Stabilization of switched continuous-time systems with all modes unstable via dwell time switching. Automatica, 2014, 50: 940–945MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Zhao X, Yin S, Li H, et al. Switching stabilization for a class of slowly switched systems. IEEE Trans Automat Contr, 2015, 60: 221–226MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Wang Y W, Yang M, Wang H O, et al. Robust stabilization of complex switched networks with parametric uncertainties and delays via impulsive control. IEEE Trans Circuits Syst I, 2009, 56: 2100–2108MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yang X, Song Q, Liu Y, et al. Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing, 2015, 152: 19–26CrossRefGoogle Scholar
  31. 31.
    Oza H B, Orlov Y V, Spurgeon S K. Continuous uniform finite time stabilization of planar controllable systems. SIAM J Control Optim, 2015, 53: 1154–1181MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Liu K X, Wu L L, Lü J H, et al. Finite-time adaptive consensus of a class of multi-agent systems. Sci China Tech Sci, 2016, 59: 22–32CrossRefGoogle Scholar
  33. 33.
    Bao H, Cao J. Finite-time generalized synchronization of nonidentical delayed chaotic systems. Nonlinear Anal Model Control, 2016, 21: 306–324MathSciNetGoogle Scholar
  34. 34.
    Li S, Sun H, Yang J, et al. Continuous finite-time output regulation for disturbed systems under mismatching condition. IEEE Trans Automat Contr, 2015, 60: 277–282MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Cao J, Li R. Fixed-time synchronization of delayed memristor-based recurrent neural networks. Sci China Inf Sci, 2017, 60: 032201CrossRefGoogle Scholar
  36. 36.
    Polyakov A, Efimov D, Perruquetti W. Finite-time and fixed-time stabilization: Implicit Lyapunov function approach. Automatica, 2015, 51: 332–340MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Orlov Y. Finite time stability and robust control synthesis of uncertain switched systems. SIAM J Control Optim, 2004, 43: 1253–1271MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Cai M, Xiang Z, Guo J. Adaptive finite-time control for a class of switched nonlinear systems using multiple Lyapunov functions. Int J Syst Sci, 2017, 48: 324–336MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Tang Y. Terminal sliding mode control for rigid robots. Automatica, 1998, 34: 51–56MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Lu J, Ho D W C, Cao J. A unified synchronization criterion for impulsive dynamical networks. Automatica, 2010, 46: 1215–1221MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Mastellone S, Dorato P, Abdallah C T. Finite-time stability of discretetime nonlinear systems: Analysis and design. In: 43rd IEEE Conference on Decision and Control. Paradise Island, 2004. 2572–2577Google Scholar
  42. 42.
    Horn R, Johnson C. Matrix Analysis. Cambridge: Cambridge University Press, 1990MATHGoogle Scholar
  43. 43.
    Wang Y, Xie L, de Souza C E. Robust control of a class of uncertain nonlinear systems. Syst Control Lett, 1992, 19: 139–149MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Boyd S, El Ghaoui L, Feron E, et al. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994CrossRefMATHGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • XinSong Yang
    • 1
  • JinDe Cao
    • 2
  • Chen Xu
    • 3
  • JianWen Feng
    • 3
  1. 1.School of Mathematical SciencesChongqing Normal UniversityChongqingChina
  2. 2.School of Mathematics, and Research Center for Complex Systems and Network SciencesSoutheast UniversityNanjingChina
  3. 3.College of Mathematics and StatisticsShenzhen UniversityShenzhenChina

Personalised recommendations