Skip to main content
Log in

Thermoelectric transport properties of BiCuSeO with embedded La0.8Sr0.2CoO3 nanoinclusions

  • Article
  • Special Topic: Functional Materials
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The efficiency-upgrading role that La0.8Sr0.2CoO3 (LSCO) plays in the thermoelectric properties of BiCuSeO (BCSO) has been studied. LSCO was introduced into BCSO, increasing the electrical conductivity from 3.3 to 52.3 S cm−1 at 303 K, from 35.8 to 97.3 S cm−1 at 873 K; respectively. The Seebeck coefficient of all composites still holds around or more than 200 µV/K. Based on the enhanced electrical conductivity and high Seebeck coefficient, the power factor is enhanced by approximately 35%, with the best sample reaching a maximum value of 476.7 µ Wm−1 K−2 at 873 K. The lattice thermal conductivity of the nanocomposites is reduced as LSCO content increases from 15 vol% to 30 vol% due to the phonon scattering by nanoparticles and grain boundaries, resulting in a significant reduction in total thermal conductivity. In short, the enhanced thermoelectric figure of merit of 0.67 at 873 K for the sample containing 20 vol% LSCO as compared to 0.53 for the pure sample; announces the promising effect of LSCO on improving thermoelectric properties of BiCuSeO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nolas G S, Poon J, Kanatzidis M. Recent developments in bulk thermoelectric materials. MRS Bull, 2006, 31: 199–205

    Article  Google Scholar 

  2. Da Y, Xuan Y M. Perfect solar absorber based on nanocone structured surface for high-efficiency solar thermoelectric generators. Sci China Tech Sci, 2015, 58: 19–28

    Article  Google Scholar 

  3. Rowe D M. CRC Handbook of Thermoelectrics. New York: CRC Press, 1995

    Book  Google Scholar 

  4. Rowe D M. CRC Handbook of Thermoelectrics: Macro to Nano. New York: CRC Press, 2005

    Book  Google Scholar 

  5. Faleev S V, Léonard F. Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys Rev B Condens Matter Mater Phys, 2008, 77: 214304/1–214304/9

    Article  Google Scholar 

  6. Zhang T, Zhang Q S, Jiang J, et al. Enhanced thermoelectric performance in p-type BiSbTe bulk alloy with nanoinclusion of ZnAlO. Appl Phys Lett, 2011, 98: 022104(1-3)

    Article  Google Scholar 

  7. Nader F, Sagar P, Matthieu B, et al. Enhanced figure of merit in Mg2Si0.877Ge0.1Bi0.023/multi wall carbon nanotube nanocomposites. RSC Adv, 2015, 5: 65328–65336

    Article  Google Scholar 

  8. Li F, Li J F. Enhanced thermoelectric performance of separately Ni-Doped and Ni/Sr-Codoped LaCoO3 nanocomposites. J Am Ceram Soc, 2012, 95: 3562–3568

    Article  Google Scholar 

  9. Sajid B, Xu W, Muhammad U, et al. Enhancement of thermoelectric performance in hierarchical mesoscopic oxide composites of Ca3Co4O9 and La0.8Sr0.2CoO3. J Am Ceram Soc, 2015, 98: 1230–1235

    Article  Google Scholar 

  10. Zhao L D, He J Q, Berardan D, at al. BiCuSeO oxyselenides: New promising thermoelectric materials. Energ Environ Sci, 2014, 7: 2900

    Article  Google Scholar 

  11. Li J, Sui J, Pei Y L, at al. Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. J Alloys Compd, 2013, 551: 649

    Article  Google Scholar 

  12. Zhao L D, Berardan D, Pei Y L, et al. Bi1-x SrxCuSeO oxyselenides as promising thermoelectric materials. Appl Phys Lett, 2010, 97: 092118

    Article  Google Scholar 

  13. Pei Y L, He J, Li J F, et al. High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped Bi-CuSeO. NPG Asia Mater, 2013, 5: e47

    Article  Google Scholar 

  14. Li J, Sui J, Pei Y, et al. A high thermoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeO oxyselenides, Energ Environ Sci, 2012, 5: 8543

    Article  Google Scholar 

  15. Lan J L, Liu Y C, Zhan B, et al. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv Mater, 2013, 25: 5086

    Article  Google Scholar 

  16. Lan J L, Zhan B, Liu Y C, at al. Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide. Appl Phys Lett, 2013, 102: 123905

    Article  Google Scholar 

  17. Liu Y C, Lan J L, Zhan B, et al. Thermoelectric Properties of Pb-Doped BiCuSeO Ceramics. J Am Ceram Soc, 2013, 96: 2710–3

    Article  Google Scholar 

  18. Li F, Wei T R, Kang F, et al. Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. J Mater Chem A, 2013, 1: 11942

    Article  Google Scholar 

  19. Luu S D N, Vaqueiro P. Synthesis. Structural characterisation and thermoelectric properties of Bi1-x PbxOCuSe. J Mater Chem A, 2013, 1: 12270

    Article  Google Scholar 

  20. Sun Lee D, An T H, Jeong M, et al. Density of state effective mass and related charge transport properties in K-doped BiCuOSe. Appl Phys Lett, 2013, 103: 232110

    Article  Google Scholar 

  21. Li J, Sui J, Pei Y, et al. The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. J Mater Chem A, 2014, 2: 4903

    Article  Google Scholar 

  22. Liu Y C, Zheng Y H, Zhan B, et al. Influence of Ag doping on thermoelectric properties of BiCuSeO. J Eur Ceram Soc, 2014, 35: 845

    Article  Google Scholar 

  23. Li Z, Xiao C, Fan S J, et al. Dual vacancies: An effect strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J Am Chem Soc, 2015, 137: 6587–6593

    Article  Google Scholar 

  24. Liu Y C, Zhou Y M, Lan J L, et al. Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenides. J Alloys Compd, 2016, 662: 320–324

    Article  Google Scholar 

  25. Liu Y C, Ding J X, Xu B, et al. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Appl Phys Lett, 2015, 106: 233903

    Article  Google Scholar 

  26. Pei Y L, Wu H J, Wu D, et al. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J Am Chem Soc, 2014, 136: 13902

    Article  Google Scholar 

  27. Sui J H, Li J, He J Q, et al. Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environ Sci, 2013, 6: 2916

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanHua Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lan, J., Zhang, B. et al. Thermoelectric transport properties of BiCuSeO with embedded La0.8Sr0.2CoO3 nanoinclusions. Sci. China Technol. Sci. 59, 1036–1041 (2016). https://doi.org/10.1007/s11431-016-6049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-6049-7

Keywords

Navigation