Skip to main content
Log in

A comprehensive simulation of weak-light phase-locking for space-borne gravitational wave antenna

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A comprehensive simulation was performed to better understand the impacts and effects of the additional technical noises on weak-light phase-locking for LISA. The result showed that the phase of the slave laser tracked well with the received transmitting light under different noise level, and the locking precision was limited by the phase readout noise when the laser frequency noise and clock jitter noise were removed. This result was then confirmed by a benchtop experimental test. The required LISA noise floor was recovered from the simulation which proved the validity of the simulation program. In order to convert the noise function into real time data with random characteristics, an algorism based on Fourier transform was also invented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danzmann K, Prince T A, Binetruy P, et al. LISA: Unveiling a hidden Universe. Assessment Study Report ESA/SRE, 2011. 54–72

    Google Scholar 

  2. Gong X F, Xu S, Bai S, et al. A scientific case study of an advanced LISA mission. Class Quantum Grav, 2011, 28: 094012

    Article  Google Scholar 

  3. Li Y Q, Luo Z R, Liu H S, et al. Laser interferometer used for satellite- satellite tracking: an on-ground methodological demonstration. Chin Phys Lett, 2012, 29: 079501

    Article  Google Scholar 

  4. Danzmann K, Seoane P A, Aoudia S, et al. The Gravitational Universe: A science theme addressed by the eLISA mission observing the entire Universe. eLISA white paper, 2013. 13–15

    Google Scholar 

  5. Bender P L, Begelman M C, Gair J R. Possible LISA follow-on mission scientific objectives. Class Quantum Grav, 2013, 30: 165017

    Article  Google Scholar 

  6. Ni W T. ASTROD-GW: Overview and progress. Int J Mod Phys D, 2013, 22: 1341004

    Article  Google Scholar 

  7. Wang Y, Keitel D, Babak S, et al. Octahedron configuration for a displacement noise-cancelling gravitational wave detector in space. Phys Rev D, 2013, 88: 104021

    Article  Google Scholar 

  8. Gong X, Lau Y K, Xu S, et al. Descope of the ALIA mission. J Phys Conf Ser, 2015, 610: 012011

    Article  Google Scholar 

  9. Liao A C, Ni W T, Shy J T. Pico-watt and femto-watt weak-light phase locking. Int J Mod Phys D, 2002, 11: 1075–1085

    Article  Google Scholar 

  10. Diekmann C, Steier F, Sheard B, et al. Analog phase lock between two lasers at LISA power levels. J Phys Conf Ser, 2009, 154: 012020

    Article  Google Scholar 

  11. Danzmann K, Bender P, Brillet A, et al. LISA pre-phase A report. 2nd ed. Max-Planck-Institut fur Quantenoptik Report No. MPQ 208. Garching, Germany, 1998. 57–82

    Google Scholar 

  12. Luo Z R, Bai S, Bian X, et al. Space laser interferometry gravitational wave detection (in Chinese). Adv Mech, 2013, 43: 415–447

    Google Scholar 

  13. McNamara P W, Ward H, Hough J. Laser phase-locking techniques for LISA: Experimental status. AIP Conf Proc, 1998, 456: 143–147

    Article  Google Scholar 

  14. McNamara P W. Weak-light phase locking for LISA. Class Quantum Grav, 2005, 22: S243–S247

    Article  Google Scholar 

  15. Esteban J J, García A F, Barke S, et al. Experimental demonstration of weak-light laser ranging and data communication for LISA. Opt Express, 2011, 19: 15937–15946

    Article  Google Scholar 

  16. Ni W T, Pan S, Peng G S, et al. Progress in laboratory R & D for fundamental physics space missions-weak light phase-locking, fibre- linked heterodyne interferometry, fibre delay line and picometre real-time motion control. Class Quantum Grav, 1996, 13: A311–A315

    Article  Google Scholar 

  17. Dick G J, Tu M, Strekalov M D, et al. Optimal phase lock at femtowatt power levels for coherent optical deep-space transponder. IPN Progress Report, 2008. 42–175

    Google Scholar 

  18. Francis S P, Lam T T Y, McKenzie K, et al. Weak-light phase tracking with a low cycle slip rate. Opt Lett, 2014, 39: 5251–5254

    Article  Google Scholar 

  19. Mitryk S J, Wand V, Mueller G. Verification of time-delay interferometry techniques using the University of Florida LISA interferometry simulator. Class Quantum Grav, 2010, 27: 084012

    Article  Google Scholar 

  20. Shaddock D, Ware B, Halverson P G, et al. Overview of the LISA Phasemeter. AIP Conf Proc, 2006, 873: 654–660

    Article  Google Scholar 

  21. Robertson D I, McNamara P, Ward H, et al. Optics for LISA. Class Quantum Grav, 1997, 14: 1575–1577

    Article  Google Scholar 

  22. Bender P L. Wavefront distortion and beam pointing for LISA. Class Quantum Grav, 2005, 22: S339–S346

    Article  Google Scholar 

  23. Dong Y H, Liu H S, Luo Z R, et al. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions. Rev Sci Instrum, 2014, 85: 074501

    Article  Google Scholar 

  24. Dong Y H, Liu H S, Luo Z R, et al. Principle demonstration of fine pointing control system for inter-satellite laser communication. Sci China Tech Sci, 2015, 58: 449–453

    Article  Google Scholar 

  25. Jennrich O. LISA technique and instrumention. Class Quantum Grav, 2009, 26: 153001

    Article  MATH  Google Scholar 

  26. Cruz R J, Thorpe J I, Preston A, et al. The LISA benchtop simulator at the University of Florida. Class Quantum Grav, 2006, 23: S751–S760

    Article  MATH  Google Scholar 

  27. Peterseim M, Brozek O S, Danzmann K, et al. Laser development and laser stabilization for the space-borne gravitational wave. AIP Conf Proc, 1998, 456: 148–155

    Article  Google Scholar 

  28. Mueller G, McNamara P, Thorpe I, et al. Laser frequency stabilization for LISA. Technical Memorandum NASA/TM-2005-212794, 2005. 1–17

    Google Scholar 

  29. Sheard B S, Gray M B, McClelland D E, et al. Laser frequency stabilization by locking to a LISA arm. Phys Lett A, 2003, 320: 9–21

    Article  Google Scholar 

  30. Yu Y, Mitryk S, Mueller G. Arm locking for space-based laser interferometry gravitational wave observatories. Phys Rev D, 2014, 90: 062005

    Article  Google Scholar 

  31. Tinto M, Estabrook F B, Armstrong J W. Time-delay interferometry for LISA. Phys Rev D, 2002, 65: 082003

    Article  Google Scholar 

  32. Shaddock D A, Ware B, Spero R E, et al. Postprocessed time-delay interferometry for LISA. Phys Rev D, 2004, 70: 081101

    Article  Google Scholar 

  33. de Vine G, Ware B, Mc Kenzie K, et al. Experimental demonstration of time-delay interferometry for the laser interferometer space antenna. Phys Rev Lett, 2010, 104: 211103

    Article  Google Scholar 

  34. Heinzel G, Esteban J J, Barke S, et al. Auxiliary functions of the LISA laser link: Ranging, clock noise transfer and data communication. Class Quantum Grav, 2011, 28: 094008

    Article  MATH  Google Scholar 

  35. Otto M, Heinzel G, Danzmann K. TDI and clock noise removal for the split interferometry configuration of LISA. Class Quantum Grav, 2012, 29: 205003

    Article  MathSciNet  Google Scholar 

  36. Klipstein W, Halverson P G, Peters R, et al. Clock noise removal in LISA. AIP Conf Proc, 2006, 873: 312–318

    Article  Google Scholar 

  37. Cervantes F G, Livas J, Silverberg R, et al. Characterization of photoreceivers for LISA. Class Quantum Grav, 2011, 28: 094010

    Article  Google Scholar 

  38. Liu H S, Dong Y H, Li Y Q, et al. The evaluation of phasemeter prototype performance for the space gravitational waves detection. Rev Sci Instrum, 2014, 85: 024503

    Article  Google Scholar 

  39. Liang Y R, Duan H Z, Yeh H C, et al. Fundamental limits on the digital phase measurement method based on cross-correlation analysis. Rev Sci Instrum, 2012, 83: 095110

    Article  Google Scholar 

  40. Liu H S, Dong Y H, Luo Z R, et al. Multi-channel phasemeter and its application in the heterodyne laser interferometry. Sci China Tech Sci, 2015, 58: 746–749

    Article  Google Scholar 

  41. Sathyaprakash B S, Schutz B F. Physics, astrophysics and cosmology with gravitational waves. Living Rev Relativ, 2009, 12: 1

    Article  MATH  Google Scholar 

  42. Camp J B, Cornish N J. Gravitational wave astronomy. Annu Rev Nucl Part Sci, 2004, 54: 525–577

    Article  Google Scholar 

  43. Moore C J, Cole R H, Berry C P L. Gravitational-wave sensitivity curves. Class Quantum Grav, 2015, 32: 015014

    Article  Google Scholar 

  44. Ajith P. Gravitational-wave data analysis using binary black-hole waveforms. Class Quantum Grav, 2008, 25: 114033

    Article  MATH  Google Scholar 

  45. Gerberding O, Sheard B, Bykov I, et al. Phasemeter core for intersatellite laser heterodyne interferometry: Modelling, simulations and experiments. Class Quantum Grav, 2013, 30: 235029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Jin.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Liu, H., Luo, Z. et al. A comprehensive simulation of weak-light phase-locking for space-borne gravitational wave antenna. Sci. China Technol. Sci. 59, 730–737 (2016). https://doi.org/10.1007/s11431-016-6043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-6043-0

Keywords

Navigation