Skip to main content
Log in

Principle demonstration of fine pointing control system for inter-satellite laser communication

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Due to high data rates and reliability, inter-satellite laser communication has developed rapidly in these days. However, the stability of the laser beam pointing is still a key technique which needs to be solved; otherwise, the beam pointing jitter noise would reduce the communication quality or, even worse, would make the inter-satellite laser communication impossible. For this purpose, a bench-top of the fine beam pointing control system has been built and tested for inter-satellite laser communication. The pointing offset of more than 100 μrad is produced by the steering mirror. With beam pointing control system turned on, the offset could be rapidly suppressed to lower than 100 nrad in less than 0.5 s. Moreover, the pointing stability can be kept at 40 nrad for yaw motion and 62 nrad for pitch motion, when the received beam jitter is set at 20 μrad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan V W S. Optical space communications. IEEE J Sel Top Quantum Electron, 2000, 6: 959–975

    Article  Google Scholar 

  2. Skormin V A, Tascillo M A, Busch T E. Demonstration of a jitter rejection technique for free-space laser. IEEE Aerosp Electron Syst Mag, 1997, 33: 568–576

    Article  Google Scholar 

  3. Arnon S, Kopeika N S. Laser satellite communication network-vibration effect and possible solutions. Proc IEEE, 1997, 85: 1646–1661

    Article  Google Scholar 

  4. Arnon S, Rotman S R, Kopeika N S. Performance limitations of a free-space optical communication satellite network owing to vibrations: heterodyne detection. Appl Opt, 1998, 37: 6366–6374

    Article  Google Scholar 

  5. Ma J, Li X, Yu S, et al. Influence of satellite vibration on optical communication performance for intersatellite laser links. Opt Rev, 2012, 19: 25–28

    Article  Google Scholar 

  6. Skormin V A, Busch T E, Givens M A. Model reference control of a fast steering mirror of a pointing, acquisition and tracking system for laser communications. Proc IEEE, 1995, 2: 907–913

    Google Scholar 

  7. Chen C C, Gardner C S. Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links. IEEE Tran Commun, 1989, 37: 252–260

    Article  Google Scholar 

  8. Skormin V A, Tascillo M A, Busch T E. An adaptive jitter rejection technique applicable to airborne laser communication system. Opt Eng, 1995, 34: 1263–1268

    Article  Google Scholar 

  9. Jono T, Takayama Y, Kura N, et al. OICETS on-orbit laser communication experiments. Proc SPIE, 2006, 6105: 610503

    Article  Google Scholar 

  10. Held K J, Barry J D. Precision pointing and tracking between satellite-borne optical systems. Opt Eng, 1988, 27: 325–333

    Article  Google Scholar 

  11. Spencer M G, Agrawal B N, Romano M, et al. Acquisition, tracking, pointing, and line-of-sight control laboratory experiments for a space-based bifocal relay mirror. Proc SPIE, 2002, 4714: 54–64

    Article  Google Scholar 

  12. Held K J, Barry J D. Precision optical pointing and tracking from spacecraft with vibrational noise. Proc SPIE, 1986, 0616: 160–173

    Article  Google Scholar 

  13. Watkins R J. The adaptive control of optical beam jitter. Dissertation of Doctor Degree. Monterey: Naval Postgraduate School, 2004. 1–2

    Google Scholar 

  14. Anderson D Z. Alignment of resonant optical cavities. Appl Opt, 1984, 23: 2944–2949

    Article  Google Scholar 

  15. Morrison E, Meers B J, Robertson D I, et al. Experimental demonstration of an automatic alignment system for optical interferometers. Appl Opt, 1994, 33: 5037–5040

    Article  Google Scholar 

  16. Heinzel G, Wand V, García A, et al. The LTP interferometer and phasemeter. Class Quantum Grav, 2004, 21: 581–587 Sheard B S, Heizel G, Danzmann K, et al. Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geod, 2012, 86: 1083–1095

    Article  Google Scholar 

  17. Dong Y H, Liu H S, Luo Z R, et al. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions. Rev Sci Instrum, 2014, 85: 074501

    Article  Google Scholar 

  18. Gong X F, Xu S, Bai S, et al. A scientific case study of an advanced LISA mission. Class Quantum Grav, 2011, 28: 094012

    Article  Google Scholar 

  19. Liu H S, Dong Y H, Li Y Q, et al. The evaluation of phasemeter prototype performance for the space gravitational waves detection. Rev Sci Instrum, 2014, 85: 024503

    Article  Google Scholar 

  20. Li Y Q, Luo Z R, Liu H S, et al. Laser interferometer used for satellite-satellite tracking: an on-ground methodological demonstration. Chin Phys Lett, 2012, 29: 079501

    Article  Google Scholar 

  21. Liu H S, Dong Y H, Luo Z R, et al. Multi-channel phasemeter and its application in the heterodyne laser interferometry. Sci China Tech Sci, 2015, 58: doi: 10.1007/s11431-015-5770-y

    Google Scholar 

  22. Danzmann K, Bender P, Brillet A, et al. LISA pre-phase A report. 2nd ed. Max-Planck-Institut fur Quantenoptik Report No. MPQ 208. Garching, Germany, 1998: 47–51

    Google Scholar 

  23. Ni W T. ASTROD-GW: Overview and progress. Int J Mod Phys D, 2013, 22: 1341004

    Article  Google Scholar 

  24. Harry G M, Fritschel P, Shaddock D A, et al. Laser interferometry for the big bang observer. Class Quantum Grav, 2006, 23: 4887–4894

    Article  MATH  Google Scholar 

  25. Wang Y, Keitel D, Babak S, et al. Octahedron configuration for a displacement noise-cancelling gravitational wave detector in space. Phys Rev D, 2013, 88: 104021

    Article  Google Scholar 

  26. Kawamura S, Nakamura T, Ando M, et al. The Japanese space gravitational wave antenna-DECIGO. Class Quantum Grav, 2006, 23: 125–131

    Article  Google Scholar 

  27. Robertson D I, McNamara P, Ward H, et al. Optics for LISA. Class Quantum Grav, 1997, 14: 1575–1577

    Article  Google Scholar 

  28. Bender P L. Wavefront distortion and beam pointing for LISA. Class Quantum Grav, 2005, 22: 339–346

    Article  Google Scholar 

  29. Jennrich O, Binetruy P, Colpi M, et al. NGO revealing a hidden universe: opening a new chapter of discovery. NGO Assessment Study Report, 2011. 5–68

    Google Scholar 

  30. Joshi A, Rue J, Datta S. Low-noise large-area quad photoreceivers based on low-capacitance quad InGaAs photodiodes. IEEE Photonics Technol Lett, 2009, 21: 1585–1587

    Article  Google Scholar 

  31. Cervantes F G, Livas J, Silverberg R, et al. Characterization of photoreceivers for LISA. Class Quantum Grav, 2011, 28: 094010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Jin.

Additional information

Contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Liu, H., Luo, Z. et al. Principle demonstration of fine pointing control system for inter-satellite laser communication. Sci. China Technol. Sci. 58, 449–453 (2015). https://doi.org/10.1007/s11431-015-5776-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5776-5

Keywords

Navigation