Skip to main content
Log in

Analyses of thermodynamic performance for the endoreversible Otto cycle with the concepts of entropy generation and entransy

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, the endoreversible Otto cycle is analyzed with the entropy generation minimization and the entransy theory. The output power and the heat-work conversion efficiency are taken as the optimization objectives, and the relationships of the output power, the heat-work conversion efficiency, the entropy generation rate, the entropy generation numbers, the entransy loss rate, the entransy loss coefficient, the entransy dissipation rate and the entransy variation rate associated with work are discussed. The applicability of the entropy generation minimization and the entransy theory to the analyses is also analyzed. It is found that smaller entropy generation rate does not always lead to larger output power, while smaller entropy generation numbers do not always lead to larger heat-work conversion efficiency, either. In our calculations, both larger entransy loss rate and larger entransy variation rate associated with work correspond to larger output power, while larger entransy loss coefficient results in larger heat-work conversion efficiency. It is also found that the concept of entransy dissipation is not always suitable for the analyses because it was developed for heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng X T, Liang X G. Entransy loss in thermodynamic processes and its application. Energy, 2012, 44: 964–972

    Article  Google Scholar 

  2. Cheng X T, Liang X G. Heat-work conversion optimization of onestream heat exchanger networks. Energy, 2012, 47: 421–429

    Article  Google Scholar 

  3. Chen L G, Wu C, Sun F R. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equil Thermody, 1999, 24: 327–359

    MATH  Google Scholar 

  4. Wu C, Chen L G, Chen J C. Recent Advances in Finite Time Thermodynamics. New York: Nova Science Publishers, 1999

    Google Scholar 

  5. Chen L G, Sun F R. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers, 2004

    Google Scholar 

  6. Chen L G, Xia S J. Generalized Thermodynamic Dynamic Optimization for Irreversible Processes. Beijing: Science Press, 2016

    Google Scholar 

  7. Ge Y L, Chen L G, Sun F R. Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy, 2016, 18: 139

    Article  Google Scholar 

  8. Chen L G, Feng H J, Xie Z H. Generalized thermodynamic optimization for iron and steel production processes: Theoretical exploration and application cases. Entropy, 2016, 18: 353

    Article  Google Scholar 

  9. Shen W D, Tong J G. Engineering Thermodynamics. Beijing: High Education Press, 2007

    Google Scholar 

  10. Özcan H. The effects of heat transfer on the exergy efficiency of an air-standard otto cycle. Heat Mass Transfer, 2011, 47: 571–577

    Article  Google Scholar 

  11. Ge Y L, Chen L G, Sun F R. Optimal path of piston motion of irreversible Otto cycle for minimum entropy generation with radiative heat transfer law. J Energ Inst, 2012, 85: 140–149

    Article  Google Scholar 

  12. Ge Y L, Chen L G, Sun F R, et al. Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid. Int J Therm Sci, 2005, 44: 506–511

    Article  Google Scholar 

  13. Wu F, Yang Z C, Chen L G, et al. Work output and efficiency of a reversible quantum Otto cycle. Therm Sci, 2010, 14: 879–886

    Article  Google Scholar 

  14. Ge Y L, Chen L G, Sun F R, et al. The effects of variable specific heats of working fluid on the performance of an irreversible Otto cycle. Int J Exerg, 2005, 2: 274–283

    Article  Google Scholar 

  15. Ge Y L, Chen L G, Sun F R. Finite-time thermodynamic modelling and analysis of an irreversible Otto-cycle. Appl Energ, 2008, 85: 618–624

    Article  Google Scholar 

  16. Xia S J, Chen L G, Sun F R. The optimal path of piston motion for Otto cycle with linear phenomenological heat transfer law. Sci China Ser G-Phys Mech Astron, 2009, 52: 708–719

    Article  Google Scholar 

  17. Ge Y L, Chen L G, Sun F R. Ecological optimization of an irreversible Otto cycle. Arab J Sci Eng, 2013, 38: 373–381

    Article  Google Scholar 

  18. Bandyopadhyay S, Bera N C, Bhattacharyya S. Thermoeconomic optimization of combined cycle power plants. Energ Conv Manage, 2001, 42: 359–371

    Article  Google Scholar 

  19. Quoilin S, Declaye S, Tchanche B F, et al. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Appl Thermal Eng, 2011, 31: 2885–2893

    Article  Google Scholar 

  20. Temir G, Bilge D. Thermoeconomic analysis of a trigeneration system. Appl Thermal Eng, 2004, 24: 2689–2699

    Article  Google Scholar 

  21. Guo Z Y, Zhu H Y, Liang X G. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50: 2545–2556

    Article  MATH  Google Scholar 

  22. Salamon P, Hoffmann K H, Schubert S, et al. What conditions make minimum entropy production equivalent to maximum power production? J Non-Equil Thermody, 2001, 26: 73–83

    Article  MATH  Google Scholar 

  23. Klein S A, Reindl D T. The relationship of optimum heat exchanger allocation and minimum entropy generation rate for refrigeration cycles. J Energ Resour Technol, 1998, 120: 172–178

    Article  Google Scholar 

  24. Cheng X T, Liang X G. Optimization of combined endoreversible Carnot heat engines with different objectives. Chin Phys B, 2015, 24: 060510

    Article  Google Scholar 

  25. Cheng X T, Xu X H, Liang X G. Principles of potential entransy ingeneralized flow. Acta Phys Sin, 2011, 60: 118103

    Google Scholar 

  26. Cheng X T, Xu X H, Liang X G. Application of entransy to optimization design of parallel thermal network of thermal control system in spacecraft. Sci China Tech Sci, 2011, 54: 964–971

    Article  MATH  Google Scholar 

  27. Cheng X T, Liang X G, Xu X H. Microscopic expression of entransy. Acta Phys Sin, 2011, 60: 060512

    Google Scholar 

  28. Cheng X T, Xu X H, Liang X G. Homogenization of temperature field and temperature gradient field. Sci China Ser E-Tech Sci, 2009, 52: 2937–2942

    Article  MATH  Google Scholar 

  29. Cheng X T, Liang X G. From thermomass to entransy. Int J Heat Mass Transfer, 2013, 62: 174–177

    Article  Google Scholar 

  30. Cheng X T, Wang W H, Liang X G. Entransy analysis of open thermodynamic systems. Chin Sci Bull, 2012, 57: 2934–2940

    Article  Google Scholar 

  31. Cheng X T, Liang X G. Analyses and optimizations of thermodynamic performance of an air conditioning system for room heating. Energ Buildings, 2013, 67: 387–391

    Article  Google Scholar 

  32. Cheng X T, Chen Q, Hu G J, et al. Entransy balance for the closed system undergoing thermodynamic processes. Int J Heat Mass Transfer, 2013, 60: 180–187

    Article  Google Scholar 

  33. Cheng X T, Liang X G. Discussion on the entransy expressions of the thermodynamic laws and their applications. Energy, 2013, 56: 46–51

    Article  Google Scholar 

  34. Cheng X T, Liang X G. Entransy and entropy analyses of heat pump systems. Chin Sci Bull, 2013, 58: 4696–4702

    Article  Google Scholar 

  35. Cheng X T, Wang W H, Liang X G. Optimization of heat transfer and heat-work conversion based on generalized heat transfer law. Sci China Tech Sci, 2012, 55: 2847–2855

    Article  Google Scholar 

  36. Cheng X T, Liang X G. Work entransy and its applications. Sci China Tech Sci, 2015, 58: 2097–2103

    Article  Google Scholar 

  37. Cheng X T, Liang X G. T-q diagram of heat transfer and heat-work conversion. Int Commun Heat Mass Transfer, 2014, 53: 9–13

    Article  Google Scholar 

  38. Cheng X T, Liang X G. Entransy: Its physical basis, applications and limitations. Chin Sci Bull, 2014, 59: 5309–5323

    Article  Google Scholar 

  39. Cheng X T, Liang X G. Discussion on the application of entransy theory to heat-work conversion processes. Acta Phys Sin, 2014, 63: 190501

    Google Scholar 

  40. Cheng X T, Liang X G. Analyses of entropy generation and heat entransy loss in heat transfer and heat-work conversion. Int J Heat Mass Transfer, 2013, 64: 903–909

    Article  Google Scholar 

  41. Cheng X T, Liang X G. Relationship between microstate number and available entransy. Chin Sci Bull, 2012, 57: 3244–3250

    Article  Google Scholar 

  42. Cheng X T, Liang X G. Entransy analyses of heat-work conversion systems with inner irreversible thermodynamic cycles. Chin Phys B, 2015, 24: 120503

    Article  Google Scholar 

  43. Cheng X T, Liang X G, Guo Z Y. Entransy decrease principle of heat transfer in an isolated system. Chin Sci Bull, 2011, 56: 847–854

    Article  Google Scholar 

  44. Liu W, Liu Z C, Jia H, et al. Entransy expression of the second law of thermodynamics and its application to optimization in heat transfer process. Int J Heat Mass Transfer, 2011, 54: 3049–3059

    Article  MATH  Google Scholar 

  45. Feng H J, Chen L G, Xie Z H, et al. Constructal entransy dissipation rate minimization for variable cross-section insulation layer of the steel rolling reheating furnace wall. Int Commun Heat Mass Transfer, 2014, 52: 26–32

    Article  Google Scholar 

  46. Feng H J, Chen L G, Sun F R. Constructal entransy dissipation rate minimization for leaf-like fins. Sci China Tech Sci, 2012, 55: 515–526

    Article  Google Scholar 

  47. Chen L G. Progress in optimization of mass transfer processes based on mass entransy dissipation extremum principle. Sci China Tech Sci, 2014, 57: 2305–2327

    Article  Google Scholar 

  48. Feng H J, Chen L G, Xie Z H, et al. Constructal entransy dissipation rate minimization for helm-shaped fin with inner heat sources. Sci China Tech Sci, 2015, 58: 1084–1090

    Article  Google Scholar 

  49. Feng H J, Chen L G, Xie Z H, et al. Constructal entransy dissipation rate minimization for triangular heat trees at micro and nanoscales. Int J Heat Mass Transfer, 2015, 84: 848–855

    Article  Google Scholar 

  50. Feng H J, Chen L G, Xie Z H, et al. Constructal entransy dissipation rate minimization of a rectangular body with nonuniform heat generation. Sci China Tech Sci, 2016, 59: 1352–1359

    Article  Google Scholar 

  51. Xia S J, Chen L G, Xie Z H, et al. Entransy dissipation minimization for generalized heat exchange processes. Sci China Tech Sci, 2016, 59: 1507–1516

    Article  Google Scholar 

  52. Cheng X T, Xu X H, Liang X G. Homogenization design of temperature field for the side surface of a cylindrical satellite. J Ordnance Equip Eng, 2016, 37: 1–6

    Google Scholar 

  53. Wang W H, Cheng X T, Liang X G. Entransy dissipation, entransydissipation- based thermal resistance and optimization of one-stream hybrid thermal network. Sci China Tech Sci, 2013, 56: 529–536

    Article  Google Scholar 

  54. Cheng X T, Zhao J M, Liang X G. Discussion on the extensions of the entransy theory. Sci China Tech Sci, 2017, 60: 363–373

    Article  Google Scholar 

  55. Chen L G, Wei S H, Sun F R. Constructal entransy dissipation minimization for ‘volume-point’ heat conduction. J Phys D-Appl Phys, 2008, 41: 195506

    Article  Google Scholar 

  56. Chen L G. Progress in entransy theory and its applications. Chin Sci Bull, 2012, 57: 4404–4426

    Article  Google Scholar 

  57. Xiao Q H, Chen L G, Sun F R. Constructal entransy dissipation rate minimization for “disc-to-point” heat conduction. Chin Sci Bull, 2011, 56: 102–112

    Article  Google Scholar 

  58. Wei S H, Chen L G, Sun F R. “Volume-Point” heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element. Sci China Ser E-Tech Sci, 2008, 51: 1283–1295

    Article  MATH  Google Scholar 

  59. Cheng X T, Zhang Q Z, Xu X H, et al. Optimization of fin geometry in heat convection with entransy theory. Chin Phys B, 2013, 22: 020503

    Article  Google Scholar 

  60. Cheng X T, Xu X H, Liang X G. Radiative entransy flux in enclosures with non-isothermal or non-grey, opaque, diffuse surfaces and its application. Sci China Tech Sci, 2011, 54: 2446–2456

    Article  Google Scholar 

  61. Feng H J, Chen L G, Xie Z H, et al. Constructal entransy optimizations for insulation layer of steel rolling reheating furnace wall with convective and radiative boundary conditions. Chin Sci Bull, 2014, 59: 2470–2477

    Article  Google Scholar 

  62. Guo Z Y, Liu X B, Tao W Q, et al. Effectiveness-thermal resistance method for heat exchanger design and analysis. Int J Heat Mass Transfer, 2010, 53: 2877–2884

    Article  MATH  Google Scholar 

  63. Cheng X T, Zhang Q Z, Liang X G. Analyses of entransy dissipation, entropy generation and entransy-dissipation-based thermal resistance on heat exchanger optimization. Appl Thermal Eng, 2012, 38: 31–39

    Article  Google Scholar 

  64. Cheng X T, Liang X G. A comparison between the entropy generation in terms of thermal conductance and generalized thermal resistance in heat exchanger analyses. Int J Heat Mass Transfer, 2014, 76: 263–267

    Article  Google Scholar 

  65. Feng H J, Chen L G, Xie Z H, et al. Constructal optimization for H-shaped multi-scale heat exchanger based on entransy theory. Sci China Tech Sci, 2013, 56: 299–307

    Article  Google Scholar 

  66. Cheng X T, Liang X G. Computation of effectiveness of two-stream heat exchanger networks based on concepts of entropy generation, entransy dissipation and entransy-dissipation-based thermal resistance. Energ Conv Manage, 2012, 58: 163–170

    Article  Google Scholar 

  67. Cheng X T, Liang X G. Optimization principles for two-stream heat exchangers and two-stream heat exchanger networks. Energy, 2012, 46: 386–392

    Article  Google Scholar 

  68. Cheng X T, Liang X G. Application of entransy optimization to one-stream series-wound and parallel heat exchanger networks. Heat Transfer Eng, 2014, 35: 985–995

    Article  Google Scholar 

  69. Wu Y Q. Output power analyses of an endoreversible Carnot heat engine with irreversible heat transfer processes based on generalized heat transfer law. Chin Phys B, 2015, 24: 070506

    Article  Google Scholar 

  70. Wu Y Q, Cai L, Wu H J. Analyses of an air conditioning system with entropy generation minimization and entransy theory. Chin Phys B, 2016, 25: 060507

    Article  Google Scholar 

  71. Wang W H, Cheng X T, Liang X G. Analyses of the endoreversible Carnot cycle with entropy theory and entransy theory. Chin Phys B, 2013, 22: 110506

    Article  Google Scholar 

  72. Cheng X T, Liang X G. Entransy variation associated with work. Int J Heat Mass Transfer, 2015, 81: 167–170

    Article  Google Scholar 

  73. Bejan A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J Appl Phys, 1996, 79: 1191–1218

    Article  Google Scholar 

  74. Cheng X T, Liang X G. Discussion on the application of entropy generation minimization to the optimizations of heat transfer and heatwork conversion. Acta Phys Sin, 2016, 65: 180503

    MathSciNet  Google Scholar 

  75. Cheng X T, Liang X G. Discussion on the applicability of entropy generation minimization to the analyses and optimizations of thermodynamic processes. Energ Conv Manage, 2013, 73: 121–127

    Article  Google Scholar 

  76. Bejan A. Advanced Engineering Thermodynamics. 2nd ed. New York: John Wiley & Sons, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YanQiu Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y. Analyses of thermodynamic performance for the endoreversible Otto cycle with the concepts of entropy generation and entransy. Sci. China Technol. Sci. 60, 692–700 (2017). https://doi.org/10.1007/s11431-016-0720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-0720-x

Keywords

Navigation