Skip to main content
Log in

Investigation on the interaction length and access resistance of a nanopore with an atomic force microscopy

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Nanopore devices have attracted a lot of attention for their potential application in DNA sequencing. Here, we study how an occluding object placed near a nanopore affects its access resistance by integrating an atomic force microscopy with a nanopore sensor. It is found that there exists a critical hemisphere around the nanopore, inside which the tip of an atomic force microscopy will affect the ionic current. The radius of this hemisphere, which is a bit smaller than the theoretical capture radius of ions, increases linearly with the applied bias voltage and quadratically with the nanopore diameter, but is independent of the operation modes and scanning speeds of the atomic force microscopy. A theoretical model is also proposed to describe how the tip position and geometrical parameters affect the access resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li J L, Gershow M, Stein D, et al. DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater, 2003, 2: 611–615

    Article  Google Scholar 

  2. Sha J J, Si W, Xu W, et al. Glass capillary nanopore for single molecule detection. Sci China Tech Sci, 2015, 58: 803–812

    Article  Google Scholar 

  3. Wu G S, Zhang Y, Si W, et al. Integrated solid-state nanopore devices for third generation DNA sequencing. Sci China Tech Sci, 2014, 57: 1925–1935

    Article  Google Scholar 

  4. Plesa C, van Loo N, Ketterer P, et al. Velocity of DNA during translocation through a solid state nanopore. Nano Lett, 2014, 15: 732–737

    Article  Google Scholar 

  5. Nelson E M, Li H, Timp G. Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography. Acs Nano, 2014, 8: 5484–5493

    Article  Google Scholar 

  6. Zhang Y, Wu G, Ma J, et al. Temperature effect on translocation speed and capture rate of nanopore-based DNA detection. Sci China Tech Sci, 2014, 58: 519–525

    Article  Google Scholar 

  7. Cracknell J A, Japrung D, Bayley H. Translocating kilobase rna through the staphylococcal α-hemolysin nanopore. Nano Lett, 2013, 13: 2500–2505

    Article  Google Scholar 

  8. Clamer M, Höfler L, Mikhailova E, et al. Detection of 3'-end rna uridylation with a protein nanopore. Acs Nano, 2013, 8: 1364–1374

    Article  Google Scholar 

  9. Steinbock L J, Krishnan S, Bulushev R D, et al. Probing the size of proteins with glass nanopores. Nanoscale, 2014, 6: 14380

    Article  Google Scholar 

  10. Sha J, Hasan T, Milana S, et al. Nanotubes complexed with DNA and proteins for resistive-pulse sensing. Acs Nano, 2013, 7: 8857–8869

    Article  Google Scholar 

  11. Liu S, Zhao Y, Parks J W, et al. Correlated electrical and optical analysis of single nanoparticles and biomolecules on a nanoporegated optofluidic chip. Nano Lett, 2014, 14: 4816–4820

    Article  Google Scholar 

  12. German S R, Luo L, White H S, et al. Controlling nanoparticle dynamics in conical nanopores. J Phys Chem C, 2013, 117: 703–711

    Article  Google Scholar 

  13. Si W, Sha J J, Liu L, et al. Effect of nanopore size on poly(dt)(30) translocation through silicon nitride membrane. Sci China Tech Sci, 2013, 56: 2398–2402

    Article  Google Scholar 

  14. Si W, Zhang Y, Wu G S, et al. DNA sequencing technology based on nanopore sensors by theoretical calculations and simulations. Chin Sci Bull, 2014, 59: 4929–4941

    Article  Google Scholar 

  15. Zwolak M, Di Ventra M. Colloquium: Physical approaches to DNA sequencing and detection. Rev Mod Phys, 2008, 80: 141–165

    Article  Google Scholar 

  16. Shankla M, Aksimentiev A. Conformational transitions and stop-andgo nanopore transport of single-stranded DNA on charged graphene. Nat Commun, 2014, 5: 5171

    Article  Google Scholar 

  17. Gopfrich K, Kulkarni C V, Pambos O J, et al. Lipid nanobilayers to host biological nanopores for DNA translocations. Langmuir, 2013, 29: 355–364

    Article  Google Scholar 

  18. Akeson M, Branton D, Kasianowicz J J, et al. Microsecond timescale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single rna molecules. Biophys J, 1999, 77: 3227–3233

    Article  Google Scholar 

  19. Maglia G, Restrepo M R, Mikhailova E, et al. Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge. Proc Natl Acad Sci USA, 2008, 105: 19720–19725

    Article  Google Scholar 

  20. Hoogerheide D P, Lu B, Golovchenko J A. Pressure-voltage trap for DNA near a solid-state nanopore. Acs Nano, 2014, 8: 7384–7391

    Article  Google Scholar 

  21. Aksimentiev A, Heng J B, Timp G, et al. Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys J, 2004, 87: 2086–2097

    Article  Google Scholar 

  22. Binquan L. Numerically testing phenomenological models for conductance of a solid-state nanopore. Nanotechnology, 2015, 26: 055502

    Article  Google Scholar 

  23. Kowalczyk S W, Grosberg A Y, Rabin Y, et al. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology, 2011, 22: 315101

    Article  Google Scholar 

  24. Venkatesan B M, Bashir R. Nanopore sensors for nucleic acid analysis. Nat Nano, 2011, 6: 615–624

    Article  Google Scholar 

  25. Xie P, Xiong Q H, Fang Y, et al. Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat Nanotech, 2012, 7: 119–125

    Article  Google Scholar 

  26. Kowalczyk S W, Dekker C. Measurement of the docking time of a DNA molecule onto a solid-state nanopore. Nano Lett, 2012, 12: 4159–4163

    Article  Google Scholar 

  27. Keyser U F, Koeleman B N, Van Dorp S, et al. Direct force measurements on DNA in a solid-state nanopore. Nat Phys, 2006, 2: 473–477

    Article  Google Scholar 

  28. Gollnick B, Carrasco C, Zuttion F, et al. Probing DNA helicase kinetics with temperature-controlled magnetic tweezers. Small, 2015, 11: 1273–1284

    Article  Google Scholar 

  29. Hyun C, Kaur H, Rollings R, et al. Threading immobilized DNA molecules through a solid-state nanopore at >100 mus per base rate. Acs Nano, 2013, 7: 5892–5900

    Article  Google Scholar 

  30. Zhang X, Liu B W, Servos M R, et al. Polarity control for nonthiolated DNA adsorption onto gold nanoparticles. Langmuir, 2013, 29: 6091–6098

    Article  Google Scholar 

  31. Peng H, Ling X S. Reverse DNA translocation through a solid-state nanopore by magnetic tweezers. Nanotechnology, 2009, 20: 185101

    Article  Google Scholar 

  32. Keyser U F, Krapf D, Koeleman B N, et al. Nanopore tomography of a laser focus. Nano Lett, 2005, 5: 2253–2256

    Article  Google Scholar 

  33. Chen C C, Derylo M A, Baker L A. Measurement of ion currents through porous membranes with scanning ion conductance microscopy. Anal Chem, 2009, 81: 4742–4751

    Article  Google Scholar 

  34. Hyun C, Rollings R, Li J L. Probing access resistance of solid-state nanopores with a scanning-probe microscope tip. Small, 2012, 8: 385–392

    Article  Google Scholar 

  35. King G M, Golovchenko J A. Probing nanotube-nanopore interactions. Phys Rev Lett, 2005, 95: 216103

    Article  Google Scholar 

  36. Hall J E. Access resistance of a small circular pore. J Gen Physiol, 1975, 66: 531–532

    Article  Google Scholar 

  37. Lulevich V, Kim S, Grigoropoulos C P, et al. Frictionless sliding of single-stranded DNA in a carbon nanotube pore observed by single molecule force spectroscopy. Nano Lett, 2011, 11: 1171–1176

    Article  Google Scholar 

  38. Wanunu M, Morrison W, Rabin Y, et al. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol, 2010, 5: 160–165

    Article  Google Scholar 

  39. Duan C, Majumdar A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat Nano, 2010, 5: 848–852

    Article  Google Scholar 

  40. Liu Q, Wu H, Wu L, et al. Voltage-driven translocation of DNA through a high throughput conical solid-state nanopore. Plos One, 2012, 7: e46014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YunFei Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, W., Yang, H., Li, K. et al. Investigation on the interaction length and access resistance of a nanopore with an atomic force microscopy. Sci. China Technol. Sci. 60, 552–560 (2017). https://doi.org/10.1007/s11431-016-0494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-0494-7

Keywords

Navigation