Skip to main content
Log in

Thermal performance analysis of non-uniform height rectangular fin based on constructal theory and entransy theory

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A model of non-uniform height rectangular fin, in which the variation of base’s thickness and width are taken into account, is established in this paper. The dimensionless maximum thermal resistance (DMTR) and the dimensionless equivalent thermal resistance (DETR) defined based on the entransy dissipation rate (EDR) are taken as performance evaluation indexes. According to constructal theory, the variations of the two indexes with the geometric parameters of the fin are analyzed by using a finite-volume computational fluid dynamics code, the effects of the fin-material fraction on the two indexes are analyzed. It is found that the two indexes decrease monotonically as the ratio between the front height and the back height of the fin increases subjected to the non-uniform height rectangular fin. When the model is reduced to the uniform height fin, the two indexes increase first and then decrease with increase in the ratio between the height of the fin and the fin space. The fin-material fraction has no effect on the change rule of the two indexes with the ratio between the height of the fin and the fin space. The sensitivity of the DETR to the geometric parameters of the fin is higher than that of the DMTR to the geometric parameters. The results obtained herein can provide some theoretical support for the thermal design of rectangular fins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garimella S V, Joshi Y K, Bar-Cohen A, et al. Thermal challenges in next generation electronic systems: Summary of panel presentations and discussions. IEEE T Compon Pack T, 2002, 25: 569–575

    Article  Google Scholar 

  2. Garimella S V, Fleischer A S, Murthy J Y, et al. Thermal challenges in next-generation electronic systems. IEEE T Compon Pack Tech, 2008, 31: 801–815

    Article  Google Scholar 

  3. Liu S, Yang J H, Gan Z Y, et al. Structural optimization of a microjet based cooling system for high power LEDs. Int J Therm Sci, 2008, 27: 1086–1095

    Article  Google Scholar 

  4. Dirker J, Meyer J P. Topology optimization for an internal heat-conduction cooling scheme in a square domain for high heat flux applications. J Heat Trans-T ASME, 2013, 135: 111010

    Article  Google Scholar 

  5. Sharma C S, Tiwari M K, Zimmermann S, et al. Energy efficient hotspot-targeted embedded liquid cooling of electronics. Appl Energy, 2015, 138: 414–422

    Article  Google Scholar 

  6. Naphon P, Wiriyasart S, Wongwises S. Thermal cooling enhancement techniques for electronic components. Int Commun Heat Mass, 2015, 61: 140–145

    Article  Google Scholar 

  7. Bejan A. Shape and Structure, from Engineering to Nature. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  8. Bejan A, Lorente S, Miguel A F, et al. Along with Constructal Theory. Switzerland: University of Lausanne, 2006

    Google Scholar 

  9. Bejan A, Lorente S. Design with Constructal Theory. New York: John Wiley & Sons, 2008

    Book  Google Scholar 

  10. Rocha L A O. Convection in Channels and Porous Media: Analysis, Optimization, and Constructal Design. Saarbrücken: VDM Verlag Dr Mueller Aktiengesellschaft & Co. KG, 2009

    Google Scholar 

  11. Lorenzini G, Moretti S, Bejan A. Fin Shape Thermal Optimization Using Bejan’s Constructal Theory. Williston: Morgan & Claypool Publishers, 2011

    Google Scholar 

  12. Chen L G. Progress in study on constructal theory and its application. Sci China Tech Sci, 2012, 55: 802–820

    Article  Google Scholar 

  13. Bejan A, Zane P J. Design in Nature. New York: Doubleeday, 2012

    Google Scholar 

  14. Rocha L A O, Lorente S, Bejan A. Constructal Law and the Unifying Principle of Design. Berlin: Springer, 2013

    Book  Google Scholar 

  15. Bejan A, Lorente S. Constructal law of design and evolution: Physics, biology, technology, and society. J Appl Phys, 2013, 113: 151301

    Article  Google Scholar 

  16. Bejan A. Constructal law: Optimization as design evolution. J Heat Trans-T ASME, 2015, 137: 61003

    Article  Google Scholar 

  17. Bejan A. Street network theory of organization in nature. J Adv Transport, 1996, 30: 85–107

    Article  Google Scholar 

  18. Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. J Heat Trans-T ASME, 1997, 40: 799–816

    MATH  Google Scholar 

  19. Alebrahim A, Bejan A. Constructal trees of circular fins for conductive and convective heat transfer. Int J Heat Mass Transf, 1999, 42: 3585–3597

    Article  MATH  Google Scholar 

  20. Almogbel M, Bejan A. Cylindrical trees of pin fins. Int J Heat Mass Transf, 2000, 43: 4285–4297

    Article  MATH  Google Scholar 

  21. Xie G N, Song Y, Asadi M, et al. Optimization of pin-fins for a heat exchanger by entropy generation minimization and constructal law. J Heat Trans-T ASME, 2015, 137: 61901

    Article  Google Scholar 

  22. Bejan A, Almogbel M. Constructal T-shaped fins. Int J Heat Mass Transf, 2000, 43: 2101–2115

    Article  MATH  Google Scholar 

  23. Lorenzini G, Biserni C, Correa R L, et al. Constructal design of T-shaped assemblies of fins cooling a cylindrical solid body. Int J Therm Sci, 2014, 83: 96–103

    Article  Google Scholar 

  24. Lorenzini G, Rocha L A O. Constructal design of Y-shaped assembly of fins. Int J Heat Mass Transf, 2006, 49: 4552–4557

    Article  MATH  Google Scholar 

  25. Xie Z H, Chen L G, Sun F R. Constructal optimization of twice level Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective. Sci China Tech Sci, 2010, 53: 2756–2764

    Article  MATH  Google Scholar 

  26. Lorenzini G, Moretti S. Bejan’s constructal theory and overall performance assessment: The global optimization for heat exchanging finned modules. Therm Sci, 2014, 18: 339–348

    Article  Google Scholar 

  27. Lorenzini G, Rocha L A O. Constructal design of T-Y assembly of fins for an optimized heat removal. Int J Heat Mass Transf, 2009, 52: 1458–1463

    Article  MATH  Google Scholar 

  28. Lorenzini G, Corrêa R L, Santos E D D, et al. Constructal design of complex assembly of fins. J Heat Trans-T ASME, 2011, 133: 81902

    Article  Google Scholar 

  29. Guo Z Y, Zhu H Y, Liang X G. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transf, 2007, 50: 2545–2556

    Article  MATH  Google Scholar 

  30. Guo Z Y, Cheng X G, Xia Z Z. Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization. Chin Sci Bull, 2003, 48: 406–410

    Article  Google Scholar 

  31. Cheng X T, Liang X G, Xu X H. Microscopic expression of entransy (in Chinese). Acta Phys Sin, 2011, 60: 60512

    Google Scholar 

  32. Cheng X T, Xu X H, Liang X G. Principles of potential entransy in generalized flow (in Chinese). Acta Phys Sin, 2011, 60: 118103

    Google Scholar 

  33. Cheng X T, Dong Y, Liang X G. Potential entransy and potential entransy decrease principle (in Chinese). Acta Phys Sin, 2011, 60: 114402

    Google Scholar 

  34. Feng H J, Chen L G, Xie Z H, et al. Thermal insulation constructal optimization for steel rolling reheating furnace wall based on entransy dissipation extremum principle. Sci China Tech Sci, 2012, 55: 3322–3333

    Article  Google Scholar 

  35. Xie Z H. Multi-objective Constructal Optimizations for Three Classes of Heat Transfer Structures (in Chinese). Wuhan: Naval University of Engineering, 2010

    Google Scholar 

  36. Feng H J, Chen L G, Xie Z H, et al. Constructal entransy dissipation rate minimization the problem of constracting “disc-point” cooling channels (in Chinese). Acta Phys Sin, 2013, 62: 134703

    Google Scholar 

  37. Chen Q, Wang M, Pan N, et al. Optimization principles for convective heat transfer. Energy, 2009, 34: 1199–1206

    Article  Google Scholar 

  38. Song W M, Meng J A, Li Z X. Optimization of flue gas turbulent heat transfer with condensation in a tube. Chin Sci Bull, 2011, 56: 263–268

    Article  Google Scholar 

  39. Jia H, Liu Z C, Liu W, et al. Convective heat transfer optimization based on minimum entransy dissipation in the circular tube. Int J Heat Mass Transf, 2014, 73: 124–129

    Article  Google Scholar 

  40. Liu X B, Wang M, Meng J A, et al. Minimum entransy dissipation principle for the optimization of transport networks. Int J Nonlin Sci Num, 2010, 11: 113–120

    MathSciNet  Google Scholar 

  41. Xia S J, Chen L G, Sun F R. Entransy dissipation minimization for one-way isothermal mass transfer processes with a generalized mass transfer law. Sci Iran Chem Chem Eng, 2012, 19: 1616–1625

    Google Scholar 

  42. Xia S J, Chen L G, Sun F R. Entransy dissipation minimization for liquid-solid phase change processes. Sci China Tech Sci, 2010, 53: 960–968

    Article  MATH  Google Scholar 

  43. Wang H R, Wu H Y. Application of minimum thermal resistance principle in optimization for melting process with multiple PCMs (in Chinese). Chin Sci Bull, 2015, 60: 3377–3385

    Article  Google Scholar 

  44. Xu M T, Cheng L, Guo J F. An application of entransy dissipation theory to heat exchanger design (in Chinese). J Engng Thermophys, 2009, 30: 2090–2092

    Google Scholar 

  45. Li X F, Guo J F, Xu M T, et al. Entransy dissipation minimization for optimization of heat exchanger design. Chin Sci Bull, 2011, 56: 2174–2178

    Article  MathSciNet  Google Scholar 

  46. Guo J F, Xu M T. The application of entransy dissipation theory in optimization design of heat exchanger. Appl Therm Eng, 2012, 36: 227235

    Article  Google Scholar 

  47. Xia S J, Chen L G, Ge Y L, et al. Influence of heat leakage on entransy dissipation minimization of heat exchanger (in Chinese). Acta Phys Sin, 2014, 63: 20505

    Google Scholar 

  48. Xia S J, Chen L G, Sun F R. Entransy dissipation minimization for a class of one-way isothermal mass transfer processes. Sci China Tech Sci, 2011, 54: 352–361

    Article  MATH  Google Scholar 

  49. Yuan F, Chen Q. Optimization criteria for the performance of heat and mass transfer in indirect evaporative cooling systems. Chin Sci Bull, 2012, 57: 687–693

    Article  Google Scholar 

  50. Zhou B, Cheng X T, Wang W H, et al. Entransy analyses of thermal processes with variable thermophysical properties. Int J Heat Mass Transf, 2015, 90: 1244–1254

    Article  Google Scholar 

  51. Cheng X T, Liang X G. Entransy, entransy dissipation and entransy loss for analyses of heat transfer and heat-work conversion processes. J Therm Sci Tech, 2013, 8: 337–352

    Article  Google Scholar 

  52. Wang W, Cheng X, Liang X. Analyses of the endoreversible Carnot cycle with entropy theory and entransy theory. Chin Phys B, 2013, 22: 110506

    Article  Google Scholar 

  53. Yang A B, Chen L G, Xia S J, et al. The optimal configuration of reciprocating engine based on maximum entransy loss. Chin Sci Bull, 2014, 59: 2031–2038

    Article  Google Scholar 

  54. Li T, Fu W, Zhu J. An integrated optimization for organic Rankine cycle based on entransy theory and thermodynamics. Energy, 2014, 72: 561–573

    Article  Google Scholar 

  55. Zhu Y, Hu Z, Zhou Y, et al. Applicability of entropy, entransy and exergy analyses to the optimization of the organic Rankine cycle. Energy Conv Manag, 2014, 88: 267–276

    Article  Google Scholar 

  56. Wang W, Cheng X, Liang X. T-Q diagram analyses and entransy optimization of the organic flash cycle (OFC). Sci China Tech Sci, 2015, 58: 630–637

    Article  Google Scholar 

  57. Kim K H, Kim K. Comparative analyses of energy-exergy-entransy for the optimization of heat-work conversion in power generation systems. Int J Heat Mass Transf, 2015, 84: 80–90

    Article  Google Scholar 

  58. Ahmadi M H, Ahmadi M A, Pourfayaz F, et al. Thermodynamic analysis and multi-objective optimization of performance of solar dish Stirling engine by the centrality of entransy and entropy generation. Int J Electr Power Energy, 2016, 78: 88–95

    Article  Google Scholar 

  59. Feng H J, Chen L G, Xie Z H, et al. Constructal entransy optimizations for insulation layer of steel rolling reheating furnace wall with convective and radiative boundary conditions. Chin Sci Bull, 2014, 59: 2470–2477

    Article  Google Scholar 

  60. Feng H J, Chen L G, Xie Z H, et al. Constructal entransy dissipation rate minimization for variable cross-section insulation layer of the steel rolling reheating furnace wall. Int Commun Heat Mass, 2014, 52: 26–32

    Article  Google Scholar 

  61. Feng H J, Chen L G, Xie Z H, et al. Constructal optimization of variable cross-section insulation layer of steel rolling reheating furnace wall based on entransy theory (in Chinese). Acta Phys Sin, 2015, 64: 054402

    Google Scholar 

  62. Liu X, Chen L G, Feng H J, et al. Constructal design for blast furnace wall based on the entransy theory. Appl Therm Eng, 2016, 100: 798–804

    Article  Google Scholar 

  63. Chen L G. Progress in entransy theory and its applications. Chin Sci Bull, 2012, 57: 4404–4426

    Article  Google Scholar 

  64. Zhao T, Chen Q. Macroscopic physical meaning of entransy and its application (in Chinese). Acta Phys Sin, 2013, 62: 234401

    Google Scholar 

  65. Chen Q, Liang X G, Guo Z Y. Entransy theory for the optimization of heat transfer: A review and update. Int J Heat Mass Transf, 2013, 63: 65–81

    Article  Google Scholar 

  66. Chen L G. Progress in optimization of mass transfer processes based on mass entransy dissipation extremum principle. Sci China Tech Sci, 2014, 57: 2305–2327

    Article  Google Scholar 

  67. Cheng X T, Liang X G. Entransy: Its physical basis, applications and limitations. Chin Sci Bull, 2014, 59: 5309–5323

    Article  Google Scholar 

  68. Cheng X T, Liang X G. Work entransy and its applications. Sci China Tech Sci, 2015, 58: 2097–2103

    Article  Google Scholar 

  69. Zhou L, Liu Y. Optimization of horizontal plate fin heat sink in natural convection for electronics cooling by simulated annealing algorithm. Adv Mater Res, 2014, 1022: 91–95

    Article  Google Scholar 

  70. Cheng X T, Zhang Q Z, Xu X H, et al. Optimization of fin geometry in heat convection with entransy theory. Chin Phys B, 2013, 22: 20503

    Article  Google Scholar 

  71. Yang A B, Chen L G, Xie Z H, et al. Comparative study on constructal optimizations of rectangular fins heat sink based on entransy dissipation rate minimization and maximum thermal resistance minimization (in Chinese). Acta Phys Sin, 2015, 64: 204401

    Google Scholar 

  72. Xie Z H, Chen L G, Sun F R. Comparative study on constructal optimizations of T-shaped fin based on entransy dissipation rate minimization and maximum thermal resistance minimization. Sci China Tech Sci, 2011, 54: 1249–1258

    Article  MATH  Google Scholar 

  73. Chen L G, Xiao Q H, Xie Z H, et al. T-shaped assembly of fins with constructal entransy dissipation rate minimization. Int Commun Heat Mass, 2012, 39: 1556–1562

    Article  Google Scholar 

  74. Xiao Q H, Chen L G, Xie Z H, et al. Constructal entransy dissipation rate minimization for Y-shaped assembly of fins (in Chinese). J Engng Thermophys, 2012, 33: 1465–1470

    Google Scholar 

  75. Chen L, Xiao Q, Xie Z, et al. Constructal entransy dissipation rate minimization for tree-shaped assembly of fins. Int J Heat Mass Transf, 2013, 67: 506–513

    Article  Google Scholar 

  76. Feng H J, Chen L G, Xie Z H, et al. Constructal optimization of complex fin with convective heat transfer based on entransy dissipation rate minimization (in Chinese). Acta Phys Sin, 2015, 64: 34701

    Google Scholar 

  77. Das B, Giri A. Second law analysis of an array of vertical platefinned heat sink undergoing mixed convection. Int Commun Heat Mass, 2014, 56: 42–49

    Article  Google Scholar 

  78. Taji S G, Parishwad G V, Sane N K. Enhanced performance of horizontal rectangular fin array heat sink using assisting mode of mixed convection. Int J Heat Mass Transf, 2014, 72: 250–259

    Article  Google Scholar 

  79. Zhou J H, Yang C X, Zhang L N. Minimizing the entropy generation rate of the plate-finned heat sinks using computational fluid and combined optimization. Appl Therm Eng, 2009, 29: 1872–1879

    Article  Google Scholar 

  80. Zhang X H, Liu D W. Optimum geometric arrangement of vertical rectangular fin arrays in natural convection. Energy Conv Manage, 2010, 51: 2449–2456

    Article  Google Scholar 

  81. Baskaya S, Sivrioglu M, Ozek M. Parametric study of natural convection heat transfer from horizontal rectangular fin arrays. Int J Therm Sci, 2000, 39: 797–805

    Article  Google Scholar 

  82. Chen H, Lai S, Haung L. Investigation of heat transfer characteristics in plate-fin heat sink. Appl Therm Eng, 2013, 50: 352–360

    Article  Google Scholar 

  83. Morega M, Bejan A. Plate fins with variable thickness and height for air-cooled electronic modules. Int J Heat Mass Transf, 1994, 37: 433–445

    Article  Google Scholar 

  84. Kim D K. Thermal optimization of plate-fin heat sinks with fins of variable thickness under natural convection. Int J Heat Mass Transf, 2012, 55: 752–761

    Article  MATH  Google Scholar 

  85. Chen Q. Irreversibility and Optimization of Convective Transport Processes (in Chinese). Beijing: Tsinghua University, 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Chen, L., Xie, Z. et al. Thermal performance analysis of non-uniform height rectangular fin based on constructal theory and entransy theory. Sci. China Technol. Sci. 59, 1882–1891 (2016). https://doi.org/10.1007/s11431-016-0081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-0081-6

Keywords

Navigation