Skip to main content
Log in

Exploration and progress of high-energy supercapacitors and related electrode materials

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

As one of new electrical energy storage systems, supercapacitors possess higher energy density than conventional capacitors and larger power density than batteries, integrating substantial merits with high energy, large power delivery, long cycle life, obvious safety, and low cost. However, the unsatisfying energy density is the inhabiting issue for the wide commercial applications. As the energy density (E, W h kg−1) is directly proportional to specific capacitance (C, F g−1) and the square of operating voltage (V, V), in this review, we summarize the recent progress in two sections: the exploration of high-performance electrode materials to achieve high specific capacitance and the construction of high-voltage supercapacitor systems for high working voltage. The progressive explorations and developments in supercapacitors could guide the future research towards high-performance, low-cost, and safe energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7: 845–854

    Article  Google Scholar 

  2. Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451: 652–657

    Article  Google Scholar 

  3. Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4: 366–377

    Article  Google Scholar 

  4. Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334: 928–935

    Article  Google Scholar 

  5. Lee S W, Gallant B M, Byon H R, et al. Nanostructured carbonbased electrodes: Bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy Environ Sci, 2011, 4: 1972–1985

    Article  Google Scholar 

  6. Zhao X, Sanchez B M, Dobson P J, et al. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale, 2011, 3: 839–855

    Article  Google Scholar 

  7. Zhang Y, Feng H, Wu X, et al. Progress of electrochemical capacitor electrode materials: A review. Int J Hydrog Energy, 2009, 34: 4889–4899

    Article  Google Scholar 

  8. Aravindan V, Gnanaraj J, Lee Y S, et al. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev, 2014, 114: 11619–11635

    Article  Google Scholar 

  9. Zhong Y, Yang M, Zhou X, et al. Orderly packed anodes for highpower lithium-ion batteries with super-long cycle life: Rational design of MnCO3/large-area graphene composites. Adv Mater, 2015, 27: 806–812

    Article  Google Scholar 

  10. Conway B E. Transition from “Supercapacitor” to “Battery” behavior in electrochemical energy storage. J Electrochem Soc, 1991, 138: 1539–1548

    Article  Google Scholar 

  11. Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater, 2014, 4: 1300816

    Google Scholar 

  12. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 2012, 41: 797–828

    Article  Google Scholar 

  13. Dai L, Chang D W, Baek J B, et al. Carbon nanomaterials for advanced energy conversion and storage. Small, 2012, 8: 1130–1166

    Article  Google Scholar 

  14. Ji J, Zhang L L, Ji H, et al. Nanoporous Ni(OH)2 thin film on 3D ultrathin- graphite foam for asymmetric supercapacitor. ACS Nano, 2013, 7: 6237–6243

    Article  MathSciNet  Google Scholar 

  15. Fan Z J, Yan J, Wei T, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater, 2011, 21: 2366–2375

    Article  Google Scholar 

  16. Bose S, Kuila T, Mishra A K, et al. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem, 2012, 22: 767–784.

    Article  Google Scholar 

  17. Shao Y, Wang H, Zhang Q, et al. High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. J Mater Chem C, 2013, 1: 1245–1251

    Article  Google Scholar 

  18. Yang J, Yu C, Fan X, et al. Ultrafast self-assembly of graphene oxide- induced monolithic NiCo-carbonate hydroxide nanowire Architectures with a superior volumetric capacitance for supercapacitors. Adv Funct Mater, 2015, 25: 2109–2116

    Article  Google Scholar 

  19. Wang L, Feng X, Ren L, et al. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically- deposited PANI. J Am Chem Soc, 2015, 137: 4920–4923

    Article  Google Scholar 

  20. Yang M, Zhong Y, Bao J, et al. Achieving battery-level energy density by constructing aqueous carbonaceous supercapacitors with hierarchical porous N-rich carbon materials. J Mater Chem A, 2015, 3: 11387–11394

    Article  Google Scholar 

  21. Ma Y, Li P, Sedloff J W, et al. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized fewwalled carbon nanotubes. ACS Nano, 2015, 9: 1352–1359

    Article  Google Scholar 

  22. Chen D, Wang Q, Wang R, et al. Ternary oxide nanostructured materials for supercapacitors: A review. J Mater Chem A, 2015, 3: 10158–10173

    Article  Google Scholar 

  23. Yang M, Li J X, Li H H, et al. Mesoporous slit-structured NiO for high-performance pseudocapacitors. Phys Chem Chem Phys, 2012, 14: 11048–11052

    Article  Google Scholar 

  24. Zhuang X, Zhang F, Wu D, et al. Graphene coupled Schiff-base porous polymers: towards nitrogen-enriched porous carbon nanosheets with ultrahigh electrochemical capacity. Adv Mater, 2014, 26: 3081–3086

    Article  Google Scholar 

  25. Weingarth D, Zeiger M, Jackel N, et al. Graphitization as a universal tool to tailor the potential-dependent capacitance of carbon supercapacitors. Adv Energy Mater, 2014, 4: 1400316

    Article  Google Scholar 

  26. Ramakrishnan P, Shanmugam S. Electrochemical performance of carbon nanorods with embedded cobalt metal nanoparticles as an electrode material for electrochemical capacitors. Electrochim Acta, 2014, 125: 232–240

    Article  Google Scholar 

  27. Han J, Xu G, Ding B, et al. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J Mater Chem A, 2014, 2: 5352–5357

    Article  Google Scholar 

  28. Lee H Y, Goodenough J B. Supercapacitor behavior with KCl electrolyte. J Solid State Chem, 1999, 144: 220–223

    Article  Google Scholar 

  29. Lee H Y, Goodenough J B. Ideal supercapacitor behavior of amorphous V2O5•nH2O in potassium chloride (KCl) aqueous solution. J Solid State Chem, 1999, 148: 81–84

    Article  Google Scholar 

  30. Wang H, Casalongue H S, Liang Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc, 2010, 132: 7472–7477

    Article  Google Scholar 

  31. Deng W, Ji X, Chen Q, et al. Electrochemical capacitors utilising transition metal oxides: An update of recent developments. RSC Adv, 2011, 1: 1171–1178

    Article  Google Scholar 

  32. Ho M Y, Khiew P S, Isa D, et al. A review of metal oxide composite electrode materials for electrochemical capacitors. Nano, 2014, 09: 1430002

    Article  Google Scholar 

  33. Wang D W, Li F, Chen Z G, et al. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem Mater, 2008, 20: 7195–7200

    Article  Google Scholar 

  34. Jiang H, Lee P S, Li C. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci, 2013, 6: 41–53

    Article  Google Scholar 

  35. Ania C O, Khomenko V, Raymundo-Piñero E, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv Funct Mater, 2007, 17: 1828–1836

    Article  Google Scholar 

  36. Ji H, Zhao X, Qiao Z, et al. Capacitance of carbon-based electrical double-layer capacitors. Nat Commun, 2014, 5: 3317

    Google Scholar 

  37. Pan S, Lin H, Deng J, et al. Novel wearable energy devices based on aligned carbon nanotube fiber textiles. Adv Energy Mater, 2015, 5: 1401438

    Google Scholar 

  38. Zhang D, Miao M, Niu H, et al. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano, 2014, 8: 4571–4579

    Article  Google Scholar 

  39. Sun H, You X, Deng J, et al. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv Mater, 2014, 26: 2868–2873

    Article  Google Scholar 

  40. Zhu J, Yang D, Yin Z, et al. Graphene and graphene-based materials for energy storage applications. Small, 2014, 10: 3480–3498

    Article  Google Scholar 

  41. Xu P, Gu T, Cao Z, et al. Carbon Nanotube fiber based stretchable wire-shaped supercapacitors. Adv Energy Mater, 2014, 4: 1300759

    Google Scholar 

  42. Wang Q, Yan J, Wang Y, et al. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon, 2014, 67: 119–127

    Article  Google Scholar 

  43. Sui Z Y, Meng Q H, Li J T, et al. High surface area porous carbons produced by steam activation of graphene aerogels. J Mater Chem A, 2014, 2: 9891–9898

    Article  Google Scholar 

  44. Qiao Z J, Chen M M, Wang C Y, et al. Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors. Bioresource Technol, 2014, 163: 386–389

    Article  Google Scholar 

  45. Wang Q, Yan J, Wang Y, et al. 3D flower-like and hierarchical porous carbon material as electrodes for high-rate performance supercapacitor. Carbon, 2014, 67, 119–127

    Article  Google Scholar 

  46. Qian W, Sun F, Xu Y, et al. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci, 2014, 7: 379–386

    Article  Google Scholar 

  47. Ma J, Xue T, Qin X. Sugar-derived carbon/graphene composite materials as electrodes for supercapacitors. Electrochim Acta, 2014, 115: 566–572

    Article  Google Scholar 

  48. Li Z, Xu Z W, Tan X H, et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci, 2013, 6: 871–878

    Article  Google Scholar 

  49. Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev, 2009, 38: 2520–2531

    Article  Google Scholar 

  50. Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332: 1537–1541

    Article  Google Scholar 

  51. Yuan C Z, Gao B, Shen L F, et al. Hierarchically structured carbon- based composites: design, synthesis and their application in electrochemical capacitors. Nanoscale, 2011, 3: 529–545

    Article  Google Scholar 

  52. Rose M, Korenblit Y, Kockrick E, et al. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small, 2011, 7: 1108–1117

    Article  Google Scholar 

  53. Raymundo-Piñero E, Kierzek K, Machnikowski J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon, 2006, 44: 2498–2507

    Article  Google Scholar 

  54. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7: 845–854

    Article  Google Scholar 

  55. Fan X, Yu C, Yang J, et al. Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for highperformance supercapacitors. Carbon, 2014, 70: 130–141

    Article  Google Scholar 

  56. Wei J, Zhou D, Sun Z, et al. A controllable synthesis of rich nitrogen- doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv Funct Mater, 2013, 23: 2322–2328

    Article  Google Scholar 

  57. Li Z, Xu Z W, Wang H L, et al. Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ Sci, 2014, 7: 1708–1718

    Article  Google Scholar 

  58. Jiang H, Ma J, Li C. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv Mater, 2012, 24: 4197–4202

    Article  Google Scholar 

  59. Huang Y, Huang X L, Lian J S, et al. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for highcapacity and high-rate lithium storage. J Mater Chem, 2012, 22: 2844–2847

    Article  Google Scholar 

  60. Yang S, Wu X, Chen C, et al. Spherical alpha-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chem Commun, 2012, 48: 2773–2775

    Article  Google Scholar 

  61. Sassin M B, Chervin C N, Rolison D R, et al. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors. Acc Chem Res, 2013, 46: 1062–1074

    Article  Google Scholar 

  62. Li J, Yang M, Wei J, et al. Preparation and electrochemical performances of doughnut-like Ni(OH)2-Co(OH)2 composites as pseudocapacitor materials. Nanoscale, 2012, 4: 4498–4503

    Article  Google Scholar 

  63. Wang W, Guo S, Lee I, et al. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep, 2014, 4: 4452

    Google Scholar 

  64. Xu J, Wang Q F, Wang X W, et al. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano, 2013, 7: 5453–5462.

    Article  Google Scholar 

  65. Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett, 2006, 6: 2690–2695

    Article  Google Scholar 

  66. Cheng S, Yang L, Chen D, et al. Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probed by in operando Raman spectroscopy. Nano Energy, 2014, 9: 161–167

    Article  Google Scholar 

  67. Zhi J, Deng S, Zhang Y, et al. Embedding Co3O4 nanoparticles in SBA-15 supported carbon nanomembrane for advanced supercapacitor materials. J Mater Chem A, 2013, 1: 3171–3176

    Article  Google Scholar 

  68. Wang H W, Yi H, Chen X, et al. Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. J Mater Chem A, 2014, 2: 3223–3230

    Article  Google Scholar 

  69. Qu Q, Zhu Y, Gao X, et al. Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv Energy Mater, 2012, 2: 950–955

    Article  Google Scholar 

  70. Shi W, Zhu J, Sim D H, et al. Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J Mater Chem, 2011, 21: 3422–3427

    Article  Google Scholar 

  71. Lu X, Yu M, Wang G, et al. H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater, 2013, 25: 267–272

    Article  Google Scholar 

  72. Chen S, Qiao S Z. Hierarchically porous nitrogen-doped graphene- NiCo(2)O(4) hybrid paper as an advanced electrocatalytic watersplitting material. ACS Nano, 2013, 7: 10190–10196

    Article  MathSciNet  Google Scholar 

  73. Qu L, Zhao Y, Khan A M, et al. Interwoven three-Dimensional architecture of cobalt oxide nanobrush-graphene@NixCO2x (OH)6x for high-performance supercapacitors. Nano Lett, 2015, 15: 2037–2044

    Article  Google Scholar 

  74. Yang J, Bao C, Zhu K, et al. High catalytic activity and stability of nickel sulfide and cobalt sulfide hierarchical nanospheres on the counter electrodes for dye-sensitized solar cells. Chem Commun, 2014, 50: 4824–4826

    Article  Google Scholar 

  75. Li P, Yang Y, Shi E, et al. Core-double-shell, carbon nanotube@ polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl Mater Interfaces, 2014, 6: 5228–5234

    Article  Google Scholar 

  76. Sun Y, Wu Q, Shi G. Graphene based new energy materials. Energy Environ Sci, 2011, 4: 1113–1132

    Article  Google Scholar 

  77. Xia C, Chen W, Wang X, et al. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications. Adv Energy Mater, 2015, doi: 10.1002/aenm.201570041

    Google Scholar 

  78. Sun Z, Xiao M, Wang S, et al. Sulfur-rich polymeric materials with semi-interpenetrating network structure as a novel lithium–sulfur cathode. J Mater Chem A, 2014, 2: 9280–9286

    Article  Google Scholar 

  79. Wang K, Wu H, Meng Y, et al. Conducting polymer nanowire arrays for high performance supercapacitors. Small, 2014, 10: 14–31

    Article  Google Scholar 

  80. Lee M, Wee B H, Hong J D. High performance flexible supercapacitor electrodes composed of ultralarge graphene sheets and vanadium dioxide. Adv Energy Mater, 2015, 5: 201401890

    Google Scholar 

  81. Fan L Z, Hu Y S, Maier J, et al. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv Funct Mater, 2007, 17: 3083–3087

    Article  Google Scholar 

  82. Wang H, Yoshio M, Thapa A K, et al. From symmetric AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors. J Power Sources, 2007, 169: 375–380

    Article  Google Scholar 

  83. Hu L, Chen W, Xie X, et al. Symmetrical MnO2-carbon nanotube- textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano, 2011, 5: 8904–8913

    Article  Google Scholar 

  84. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci, 2014, 7: 1597–1614

    Article  Google Scholar 

  85. Chen K, Xue D. Rare earth and transitional metal colloidal supercapacitors. Sci China Tech Sci, 2015, doi: 10.1007/s11431-015-5915-z

    Google Scholar 

  86. Liu F, Song, S, Xue D, et al. Folded structured graphene paper for high performance electrode materials. Adv Mater, 2012, 24: 1089–1094

    Article  Google Scholar 

  87. Chen K, Song S, Xue D. An ionic aqueous pseudocapacitor system: electroactive ions in both a salt electrode and redox electrolyte. RSC Adv, 2014, 4: 23338–2343

    Article  Google Scholar 

  88. Zhu S, Cen W, Hao L, et al. Flower-like MnO2 decorated activated multihole carbon as high-performance asymmetric supercapacitor electrodes. Mater Lett, 2014, 135: 11–14

    Article  Google Scholar 

  89. Demarconnay L, Raymundo-Piñero E, Béguin F. A symmetric carbon/ carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem Commun, 2010, 12: 1275–1278

    Article  Google Scholar 

  90. RoldáN S, Granda M, MeneNdez R, et al. Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte. J Phys Chem C, 2011, 115: 17606–17611

    Article  Google Scholar 

  91. Senthilkumar S T, Selvan R K, Lee Y S, et al. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J Mater Chem A, 2013, 1: 1086–1095

    Article  Google Scholar 

  92. Xia H, Li B, Lu L. 1.8 V symmetric supercapacitors developed using nanocrystalline Ru films as electrodes. RSC Adv, 2014, 4: 11111–11114

    Article  Google Scholar 

  93. Reddy A L M, Shaijumon M M, Gowda S R, et al. Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J Phys Chem C, 2010, 114: 658–663

    Article  Google Scholar 

  94. Sun L, Tian C, Fu Y, et al. Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem Eur J, 2014, 20: 564–574

    Article  Google Scholar 

  95. Yang M, Zhong Y R, Zhou X L, et al. Ultrasmall MnO@N-rich carbon nanosheets for high-power asymmetric supercapacitors. J Mater Chem A, 2014, 2: 12519–12525

    Article  Google Scholar 

  96. Nolan H, Mendoza-Sanchez B, Ashok Kumar N, et al. Nitrogendoped reduced graphene oxide electrodes for electrochemical supercapacitors. Phys Chem Chem Phys, 2014, 16: 2280–2284

    Article  Google Scholar 

  97. Gao S, Sun Y, Lei F, et al. Ultrahigh energy density realized by a single-layer ß-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew. Chem Int Ed, 2014, 53: 12789–12793

    Article  Google Scholar 

  98. Zhou C, Zhang Y, Li Y, et al. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett, 2013, 13: 2078–2085

    Article  Google Scholar 

  99. Sumboja A, Foo C Y, Wang X, et al. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv Mater, 2013, 25: 2809–2815

    Article  Google Scholar 

  100. Zhu S J, Jia J Q, Wang T, et al. Rational design of octahedron and nanowire CeO@MnO core-shell heterostructures with outstanding rate capability for asymmetric supercapacitors. Chem Commun, 2015, doi: 10.1039/c5cc03976b.

    Google Scholar 

  101. Chen K, Song S, Xue D. Beyond graphene: materials chemistry toward high performance inorganic functional materials. J Mater Chem A, 2015, 3: 2441–2453

    Article  Google Scholar 

  102. Zhu S J, Zhang J, Ma J J, et al. Rational design of coaxial mesoporous birnessite manganese dioxide/amorphous-carbon nanotubes arrays for advanced asymmetric supercapacitors. J Power Sources, 2015, 278: 555–561

    Article  Google Scholar 

  103. Chen K, Liu F, Xue D, et al. Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6. Nanoscale 2015, 7: 432–439

    Article  Google Scholar 

  104. Chen K, Song S, Liu F, et al. Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev, 2015, 44: 6230–6257

    Article  Google Scholar 

  105. Wang H, Xu Z, Li Z, et al. Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett, 2014, 14: 1987–1994

    Article  Google Scholar 

  106. Vlad A, Singh N, Rolland J, et al. Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci Rep, 2014, 4: 4315

    Article  Google Scholar 

  107. Kim H, Park K Y, Cho M Y, et al. High-performance hybrid supercapacitor based on graphene-wrapped Li4Ti5O12 and activated carbon. ChemElectroChem, 2014, 1: 125–130

    Article  Google Scholar 

  108. Naoi K, Naoi W, Aoyagi S, et al. New generation “Nanohybrid Supercapacitor”. Acc Chem Res, 2013, 46: 1075–1083

    Article  Google Scholar 

  109. Ren J J, Su L W, Qin X, et al. Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density. J Power Sources, 2014, 264: 108–113

    Article  Google Scholar 

  110. Vlad A, Singh N, Rolland J, et al. Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci Rep, 2014, 4: 4315

    Article  Google Scholar 

  111. Kim M, Xu F, Lee J H, et al. A fast and efficient pre-doping approach to high energy density lithium-ion hybrid capacitors. J Mater Chem A, 2014, 2: 10029–10033

    Article  Google Scholar 

  112. Zhang F, Zhang T, Yang X, et al. A high-performance supercapacitor- battery hybrid energy storage device based on grapheneenhanced electrode materials with ultrahigh energy density. Energy Environ Sci, 2013, 6: 1623–1632

    Article  Google Scholar 

  113. Jain A, Aravindan V, Jayaraman S, et al. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Sci Rep, 2013, 3: 3002

    Article  Google Scholar 

  114. Yang M, Zhong Y R, Ren J J, et al. Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv Energy Mater, 2015, doi: 10.1002/aenm.201500550

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Xia, H. Exploration and progress of high-energy supercapacitors and related electrode materials. Sci. China Technol. Sci. 58, 1851–1863 (2015). https://doi.org/10.1007/s11431-015-5940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5940-y

Keywords

Navigation