Skip to main content
Log in

A review of negative electrode materials for electrochemical supercapacitors

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

With increasing demands for clean and sustainable energy, the advantages of high power density, high efficiency, and long life expectancy have made supercapacitors one of the major emerging devices for electrochemical energy storage and power supply. However, one of the key challenges for SCs is their limited energy density, which has hindered their wider application in the field of energy storage. Despite significant progress has been achieved in the fabrication of high-energy density positive electrodes materials, negative electrode materials with high capacitance and a wide potential window are relatively less explored. In this review, we introduced some new negative electrode materials except for common carbon-based materials and what’s more, based on our team’s work recently, we put forward some new strategies to solve their inherent shortcoming as electrode material for SCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu C, Li F, Ma L P, et al. Advanced materials for energy storage. Adv Mater, 2010, 22: 28–62

    Article  Google Scholar 

  2. Yu G, Hu L, Vosgueritchian M, et al. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett, 2011, 11: 2905–2911

    Article  Google Scholar 

  3. Chen H, Cong T N, Yang W, et al. Progress in electrical energy storage system: A critical review. Prog Nat Sci, 2009, 19: 291–312

    Article  Google Scholar 

  4. Baker J N, Collinson A. Electrical energy storage at the turn of the Millennium. Power Eng J, 1999, 13: 107112

    Article  Google Scholar 

  5. Walawalkar R, Apt J, Mancini R. Economics of electric energy storage for energy arbitrage and regulation in New York. Energy Policy, 2007, 35: 2558–2568

    Article  Google Scholar 

  6. Naoi K, Naoi W, Aoyagi S, et al. New generation “nanohybrid supercapacitor”. Acc Chem Res, 2013, 46: 1075–1083

    Article  Google Scholar 

  7. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 2012, 41: 797–828

    Article  Google Scholar 

  8. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7: 845–854

    Article  Google Scholar 

  9. Vangari M, Pryor T, Jiang L. Supercapacitors: Review of materials and fabrication methods. J Energ Eng, 2013, 139: 72–79

    Article  Google Scholar 

  10. Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Lett, 2008, 8: 3498–3502

    Article  Google Scholar 

  11. Chen K, Song S, Xue D. An ionic aqueous pseudocapacitor system: Electroactive ions in both a salt electrode and redox electrolyte. RSC Adv, 2014, 4: 23338–23343

    Article  Google Scholar 

  12. Miller J R, Simon P. Materials science: Electrochemical capacitors for energy management. Science, 2008, 321: 651–652

    Article  Google Scholar 

  13. Cheng Y, Zhang H, Lu S, et al. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale, 2013, 5: 1067–1073

    Article  Google Scholar 

  14. Lu X F, Lin J, Huang Z X, et al. Three-dimensional nickel Oxide@Carbon hollow hybrid networks with enhanced performance for electrochemical energy storage. Electrochim Acta, 2015, 161: 236–244

    Article  Google Scholar 

  15. Li Q, Liang C L, Lu X F, et al. Ni@NiO core–shell nanoparticle tube arrays with enhanced supercapacitor performance. J Mater Chem A, 2015, 3: 6432–6439

    Article  Google Scholar 

  16. Wang G M, Wang H Y, Lu X H, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater, 2014, 26: 2676–2682.

    Article  Google Scholar 

  17. Wang W, Liu W, Zeng Y X, et al. A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv Mater, 2015, 27: 3572–3578

    Article  Google Scholar 

  18. Yu M H, Zhang Y, Zeng Y, et al. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Adv Mater, 2014, 26: 4724–4729

    Article  Google Scholar 

  19. Yu M H, Huang Y C, Li C, et al. Building three-dimensional graphene frameworks for energy storage and catalysis. Adv Funct Mater, 2015, 25: 324–330

    Article  MathSciNet  Google Scholar 

  20. Zhai T, Wang F X, Yu M H, et al. 3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale, 2013, 5: 6790–6796

    Article  Google Scholar 

  21. Chen K, Song S, Liu F, et al. Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev, 2015, 44: 6230–657

    Article  Google Scholar 

  22. Chen K, Song S, Xue D. Beyond graphene: Materials chemistry toward high performance inorganic functional materials. J Mater Chem A, 2015, 3: 2441–2453

    Article  Google Scholar 

  23. Zhong J H, Wang A L, Li G R, et al. Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J Mater Chem, 2012, 22: 5656–5665

    Article  Google Scholar 

  24. Li G R, Wang Z L, Zheng F L, et al. ZnO@MoO3 core/shell nanocables: Facile electrochemical synthesis and enhanced supercapacitor performances. J Mater Chem, 2011, 21: 4217–4221

    Article  Google Scholar 

  25. Yu M H, Zeng Y X, Han Y, et al. Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100000 cycles. Adv Funct Mater, 2015, 25: 3534–3540

    Article  Google Scholar 

  26. Li H B, Yu M H, Lu X H, et al. Amorphous cobalt hydroxide with superior pseudocapacitive performance. ACS Appl Mater Inter, 2014, 6: 745–749

    Article  Google Scholar 

  27. Feng J X, Ye S H, Lu X F, et al. Asymmetric paper supercapacitor based on amorphous porous Mn3O4 negative electrode and Ni(OH)2 positive electrode: A novel and high-performance flexible electrochemical energy storage device. ACS Appl Mater Inter, 2015, 7: 11444–11451

    Article  Google Scholar 

  28. He Y B, Li G R, Wang Z L, et al. Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: Controllable electrochemical synthesis and enhanced supercapacitor performances. Energ Environ Sci, 2011, 4: 1288–1292

    Article  Google Scholar 

  29. Zhai T, Lu X H, Ling Y, et al. A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O(13–x). Adv Mater, 2014, 26: 5869–5875

    Article  Google Scholar 

  30. Peng S, Li L, Tan H, et al. MS2(M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv Funct Mater, 2014, 24: 2155–2162

    Article  Google Scholar 

  31. Xia X, Zhu C, Luo J, et al. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small, 2013, 10: 766–773

    Article  Google Scholar 

  32. Zhai T, Lu X H, Wang H, et al. An electrochemical capacitor with applicable energy density of 7.4 Wh/kg at average power density of 3000 W/kg. Nano Lett, 2015, 15: 3189–3194

    Article  Google Scholar 

  33. Lu X H, Liu T Y, Zhai T, et al. Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell. Adv Energy Mater, 2013, 4: 168–175

    Google Scholar 

  34. Balogun M S, Qiu W, Wang W, et al. Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J Mater Chem A, 2015, 3: 1364–1387

    Article  Google Scholar 

  35. Lu X H, Wang G, Zhai T, et al. Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett, 2012, 12: 5376–5381

    Article  Google Scholar 

  36. Lu X H, Yu M H, Zhai T, et al. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett, 2013, 13: 2628–2633

    Article  Google Scholar 

  37. Wang Z L, He X J, Ye S H, et al. Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage. ACS Appl Mater Inter, 2014, 6: 642–647

    Article  Google Scholar 

  38. Liu T, Finn L, Yu M H, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett, 2014, 14: 2522–2527

    Article  Google Scholar 

  39. Wang Z L, Guo R, Ding L X, et al. Controllable template-assisted electrodeposition of single-and multi-walled nanotube arrays for electrochemical energy storage. Sci Rep, 2013, 3: 1204

    Google Scholar 

  40. Wang X, Lu X H, Liu B, et al. Flexible energy-storage devices: design consideration and recent progress. Adv Mater 2014, 26: 4763–4782

    Article  Google Scholar 

  41. Yu M H, Qiu W T, Wang F X, et al. Three dimensional architectures: design, assembly and application in electrochemical capacitors. J Mater Chem A, 2015, 3: 15792–15823

    Article  Google Scholar 

  42. Chang J, Jin M, Yao F, et al. Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater, 2013, 23: 5074–5083

    Article  Google Scholar 

  43. Hall P J, Mirzaeian M, Fletcher S I, et al. Energy storage in electrochemical capacitors: Designing functional materials to improve performance. Energ Environ Sci, 2010, 3: 1238–1251

    Article  Google Scholar 

  44. Lu X H, Yu M H, Wang G M, et al. Flexible solid-state supercapacitors: design, fabrication and applications. Energ Environ Sci, 2014, 7: 2160–2181

    Article  Google Scholar 

  45. Feng J X, Ye S H, Wang A L, et al. Flexible cellulose paper-based asymmetrical thin film supercapacitors with high-performance for electrochemical energy storage. Adv Funct Mater, 2014, 24: 7093–7101

    Article  Google Scholar 

  46. Yan J, Fan Z J, Sun W, et al. Advanced asymmetric supercapacitors based on Ni(OH)2/Graphene and porous graphene electrodes with high energy density. Adv Funct Mater, 2012, 22: 2632–2641

    Article  Google Scholar 

  47. Lu X H, Yu M H, Wang G M, et al. H-TiO2@MnO2//H-TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater, 2013, 25: 267–272

    Article  Google Scholar 

  48. Wang K, Wu H, Meng Y, et al. Conducting polymer nanowire arrays for high performance supercapacitors. Small, 2013, 10: 14–31

    Article  Google Scholar 

  49. Lu X F, Chen X Y, Zhou W, et al. alpha-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl Mater Inter, 2015, 7: 14843–14850

    Article  Google Scholar 

  50. Lu X H, Zeng Y X, Yu M H, et al. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater, 2014, 26: 3148–3155

    Article  Google Scholar 

  51. Yang P, Ding Y, Lin Z, et al. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett, 2014, 14: 731–736

    Article  Google Scholar 

  52. Zhai T, Lu X H, Ling Y, et al. A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O(13–x). Adv Mater, 2014, 26: 5869–5875

    Article  Google Scholar 

  53. Chen K, Liu F, Song S, et al. Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene paper. CrystEngComm, 2014, 16: 7771–7776

    Article  Google Scholar 

  54. Chen K F, Liu F, Xue D F, et al. Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6. Nanoscale, 2014, 7: 432–439

    Article  Google Scholar 

  55. Liu F, Song S Y, Xue D F, et al. Folded structured graphene paper for high performance electrode materials. Adv Mater, 2012, 24: 1089–1094

    Article  Google Scholar 

  56. Liu L, Niu Z, Zhang L, et al. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater, 2014, 26: 4855–4862

    Article  Google Scholar 

  57. Dai L, Chang D W, Baek J B, et al. Carbon nanomaterials for advanced energy conversion and storage. Small, 2012, 8: 1130–1166

    Article  Google Scholar 

  58. Shi L, He H, Fang Y, et al. Effect of heating rate on the electrochemical performance of MnOX@CNF nanocomposites as supercapacitor electrodes. Chin Sci Bull, 2014, 59: 1832–1837

    Article  Google Scholar 

  59. Liu F, Xue D. An electrochemical route to quantitative oxidation of graphene frameworks with controllable C/O ratios and added pseudocapacitances. Chem Eur J, 2013, 19: 10716–10722

    Article  Google Scholar 

  60. Yu M H, Wang W, Li C, et al. Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Materials, 2014, 6: e129

    Article  Google Scholar 

  61. An B, Xu S, Li L, et al. Carbon nanotubes coated with a nitrogen-doped carbon layer and its enhanced electrochemical capacitance. J Mater Chem A, 2013, 1: 7222–7228

    Article  Google Scholar 

  62. Kim N D, Buchholz D B, Casillas G, et al. Hierarchical design for fabricating cost-effective high performance supercapacitors. Adv Funct Mater, 2014, 24: 4186–4194

    Article  Google Scholar 

  63. Lu Y, Huang Y, Zhang F, et al. Functionalized graphene oxide based on p-phenylenediamine as spacers and nitrogen dopants for high performance supercapacitors. Chin Sci Bull, 2014, 59: 1809–1815

    Article  Google Scholar 

  64. Xu J, He F, Gai S, et al. Nitrogen-enriched, double-shelled carbon/layered double hydroxide hollow microspheres for excellent electrochemical performance. Nanoscale, 2014, 6: 10887–10895

    Article  Google Scholar 

  65. Li C, Hu Y, Yu M H, et al. Nitrogen doped graphene paper as a highly conductive, and light-weight substrate for flexible supercapacitors. RSC Adv, 2014, 4: 51878–51883

    Article  Google Scholar 

  66. Chen K, Xue D. Chemical reaction and crystallization control on electrode materials for electrochemical energy storage. Sci Sin Tech, 2015, 45: 36–49

    Article  Google Scholar 

  67. Lee K H, Lee Y W, Ko A R, et al. Single-crystalline mesoporous molybdenum nitride nanowires with improved electrochemical properties. J Am Ceram Soc, 2013, 96: 37–39

    Article  Google Scholar 

  68. Aricò A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4: 366–377

    Article  Google Scholar 

  69. Tian W, Wang X, Zhi C, et al. Ni(OH)2 nanosheet@ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy, 2013, 2: 754–763

    Article  Google Scholar 

  70. Jeong J M, Choi B G, Lee S C, et al. Hierarchical hollow spheres of Fe2O3@Polyaniline for lithium ion battery anodes. Adv Mater, 2013, 25: 6250–6255

    Article  Google Scholar 

  71. Lee K, Deng S, Fan H M, et al. α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale, 2012, 4: 2958–2961

    Article  Google Scholar 

  72. Wang S X, Jin C C, Qian W J. Bi2O3 with activated carbon composite as a supercapacitor electrode. J Alloys Compd, 2014, 615: 12–17

    Article  Google Scholar 

  73. Yu M H, Han Y, Cheng X Y, et al. Holey tungsten oxynitride nanowires: novel anodes efficiently integrate microbial chemical energy conversion and electrochemical energy storage. Adv Mater, 2015, 27: 3085–3091

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to GaoRen Li or YeXiang Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Li, G. & Tong, Y. A review of negative electrode materials for electrochemical supercapacitors. Sci. China Technol. Sci. 58, 1799–1808 (2015). https://doi.org/10.1007/s11431-015-5931-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5931-z

Keywords

Navigation