Skip to main content
Log in

Towards unlocking high-performance of supercapacitors: From layered transition-metal hydroxide electrode to redox electrolyte

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Both energy density and power density are crucial for a supercapacitor device, where the trade-off must be made between the two factors towards a practical application. Herein we focus on pseudocapacitance produced from the electrode and the electrolyte of supercapacitors to simultaneously achieve high energy density and power density. On the one hand, layered transition metal hydroxides (Ni(OH)2 and Co(OH)2) are introduced as electrodes, followed with exploration of the effect of the active materials and the substrate on the electrochemical behavior. On the other hand, various redox electrolytes are utilized to improve the specific capacitance of an electrolyte. The roadmap is to select an appropriate electrode and a dedicated electrolyte in order to achieve high electrochemical performance of the supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7: 845–854

    Article  Google Scholar 

  2. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 2012, 41: 797–828

    Article  Google Scholar 

  3. Service R F. Materials science-new ‘supercapacitor’ promises to pack more electrical punch. Science, 2006, 313: 902–902

    Article  Google Scholar 

  4. Gogotsi Y, Simon P. True performance metrics in electrochemical energy storage. Science, 2011, 334: 917–918

    Article  Google Scholar 

  5. Conway B E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Berlin: Springer, 1999

    Book  Google Scholar 

  6. Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci, 2012, 5: 7854–7863

    Article  Google Scholar 

  7. Becker H I. Low voltage electrolytic capacitor. US 2800616, 1957

    Google Scholar 

  8. Zhao M Q, Zhang Q, Huang J Q, et al. Towards high purity graphene/single-walled carbon nanotube hybrids with improved electrochemical capacitive performance. Carbon, 2013, 54: 403–411

    Article  Google Scholar 

  9. Jiang J, Li Y, Liu J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater, 2012, 24: 5166–5180

    Article  Google Scholar 

  10. Zhong C, Deng Y, Hu W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev, 2015, doi: 10.1039/C5CS00303B

    Google Scholar 

  11. Zhang J, Zhao X S. On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem, 2012, 5: 818–841

    Article  Google Scholar 

  12. Tian W, Wang X, Zhi C, et al. Ni(OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy, 2013, 2: 754–763

    Article  Google Scholar 

  13. Salunkhe R R, Lin J, Malgras V, et al. Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy, 2015, 11: 211–218

    Article  Google Scholar 

  14. Gao S, Sun Y, Lei F, et al. Ultrahigh energy density realized by a single-layer beta-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew Chem Intern Ed, 2014, 53: 12789–12793

    Article  Google Scholar 

  15. Cheng Y, Zhang H, Varanasi C V, et al. Improving the performance of cobalt–nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches. Energy Environ Sci, 2013, 6: 3314–3321

    Article  Google Scholar 

  16. Kulkarni S B, Jagadale A D, Kumbhar V S, et al. Potentiodynamic deposition of composition influenced Co1-x Nix LDHs thin film electrode for redox supercapacitors. Inter J Hydrogen Energy, 2013, 38: 4046–4053

    Article  Google Scholar 

  17. Yu H, Wu J, Fan L, et al. An efficient redox-mediated organic electrolyte for high-energy supercapacitor. J Power Sources, 2014, 248: 1123–1126

    Article  Google Scholar 

  18. Yu H, Wu J, Lin J, et al. A reversible redox strategy for swcnt-based supercapacitors using a high-performance electrolyte. ChemPhys Chem, 2013, 14: 394–399

    Article  Google Scholar 

  19. Wu J, Yu H, Fan L, et al. A simple and high-effective electrolyte mediated with p-phenylenediamine for supercapacitor. J Mater Chem, 2012, 22: 19025–19030

    Article  Google Scholar 

  20. Yu H, Fan L, Wu J, et al. Redox-active alkaline electrolyte for carbon-based supercapacitor with pseudocapacitive performance and excellent cyclability. RSC Adv, 2012, 2: 6736–6740

    Article  Google Scholar 

  21. Yu H, Wu J, Fan L, et al. Application of a novel redox-active electrolyte in MnO2-based supercapacitors. Sci China Chem, 2012, 55: 1319–1324

    Article  Google Scholar 

  22. Yu H, Wu J, Fan L, et al. A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor. J Power Sources, 2012, 198: 402–407

    Article  Google Scholar 

  23. Sun G, Li K, Sun C. Electrochemical performance of electrochemical capacitors using Cu(ii)-containing ionic liquid as the electrolyte. Micro Meso Mater, 2010, 128: 56–61

    Article  Google Scholar 

  24. Yu H, Wu J, Fan L, et al. Improvement of the performance for quasisolid-state supercapacitor by using PVA–KOH–KI polymer gel electrolyte. Electrochim Acta, 2011, 56: 6881–6886

    Article  Google Scholar 

  25. Senthilkumar S T, Selvan R K, Lee Y S, et al. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J Mater Chem A, 2013, 1: 1086–1095

    Article  Google Scholar 

  26. Senthilkumar S T, Selvan R K, Ulaganathan M, et al. Fabrication of Bi2O3AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances. Electrochim Acta, 2014, 115: 518–524

    Article  Google Scholar 

  27. Chen H, Hu L, Chen M, et al. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Func Mater, 2014, 24: 934–942

    Article  Google Scholar 

  28. Jiang W, Yu D, Zhang Q, et al. Ternary hybrids of amorphous nickel hydroxide-carbon nanotube-conducting polymer for supercapacitors with high energy density, excellent rate capability, and long cycle life. Adv Func Mater, 2015, 25: 1063–1073

    Article  Google Scholar 

  29. Zhao J, Chen J, Xu S, et al. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv Func Mater, 2014, 24: 2938–2946

    Article  Google Scholar 

  30. Yang J, Yu C, Fan X, et al. 3D architecture materials made of NiCoAl-LDH nanoplates coupled with NiCo-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors. Adv Energy Mater, 2014, 4: 1400761

    Google Scholar 

  31. Gu C D, Ge X, Wang X L, et al. Cation–anion double hydrolysis derived layered single metal hydroxide superstructures for boosted supercapacitive energy storage. J Mater Chem A, 2015, 3: 14228–14238

    Article  Google Scholar 

  32. Wang L, Wang D, Dong X Y, et al. Layered assembly of graphene oxide and Co–Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chem Comm, 2011, 47: 3556–3558

    Article  MathSciNet  Google Scholar 

  33. Vialat P, Mousty C, Taviot-Gueho C, et al. High-performing monometallic cobalt layered double hydroxide supercapacitor with defined local structure. Adv Func Mater, 2014, 24: 4831–4842

    Article  Google Scholar 

  34. Della Noce R, Eugénio S, Silva T M, et al. Alpha-Co(OH)2/carbon nanofoam composite as electrochemical capacitor electrode operating at 2 V in aqueous medium. J Power Sources, 2015, 288: 234–242

    Article  Google Scholar 

  35. Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater, 2014, 4: 1300816

    Google Scholar 

  36. Zhi M, Xiang C, Li J, et al. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale, 2013, 5: 72–88

    Article  Google Scholar 

  37. Cheng J P, Zhang J, Liu F. Recent development of metal hydroxides as electrode material of electrochemical capacitors. RSC Adv, 2014, 4: 38893–38917

    Article  Google Scholar 

  38. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci, 2014, 7: 1597–1614

    Article  Google Scholar 

  39. Cao L, Xu F, Liang Y Y, et al. Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y Zeolite and its application as a supercapacitor with high energy density advanced materials. Adv Mater, 2004, 16: 1853–1857

    Article  Google Scholar 

  40. Cao L, Kong L B, Liang Y Y, et al. Preparation of novel nano-composite Ni(OH)2/usy material and its application for electrochemical capacitance storage. Chem Comm, 2004, 14: 1646–1647

    Article  Google Scholar 

  41. Liang Y Y, Bao S J, Li H L. Nanocrystalline nickel cobalt hydroxides/ultrastable Y zeolite composite for electrochemical capacitors. J Solid State Electrochem, 2006, 11: 571–576

    Article  Google Scholar 

  42. Yan J, Fan Z, Sun W, et al. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Func Mater, 2012, 22: 2632–2641

    Article  Google Scholar 

  43. Xiong X, Ding D, Chen D, et al. Three-dimensional ultrathin Ni-(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy, 2015, 11: 154–161

    Article  Google Scholar 

  44. Lu Z, Chang Z, Zhu W, et al. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical faradic capacitance. Chem Comm, 2011, 47: 9651–9653

    Article  Google Scholar 

  45. Wang H L, Casalongue H S, Liang Y Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc, 2010, 132: 7472–7477

    Article  Google Scholar 

  46. Wang X, Wang Y, Zhao C, et al. Electrodeposited Ni(OH)2 nanoflakes on graphite nanosheets prepared by plasma-enhanced chemical vapor deposition for supercapacitor electrode. New J Chem, 2012, 36: 1902–1906

    Article  Google Scholar 

  47. Wang X, Liu J, Wang Y, et al. Ni(OH)2 nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors. Mater Res Bull, 2014, 52: 89–95

    Article  Google Scholar 

  48. Wang Z, Wang X, Zhao Y X, et al. MnOx/Ni(OH)2 nanocomposite materials for high-performance electrochemical capacitor application. J Nano Res, 2012, 20: 53–60

    Article  Google Scholar 

  49. Dong X, Wang L, Wang D, et al. Layer-by-layer engineered Co-Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor. Langmuir, 2012, 28: 293–298

    Article  MathSciNet  Google Scholar 

  50. Wang L, Dong Z H, Wang Z G, et al. Layered α-Co(OH)2 nanocones as electrode materials for pseudocapacitors: Understanding the effect of interlayer space on electrochemical activity. Adv Func Mater, 2013, 23: 2758–2764

    Article  Google Scholar 

  51. Wang L, Lin C, Zhang F X, et al. Phase transformation guided singlelayer beta-Co(OH)2 nanosheets for pseudocapacitive electrodes. ACS Nano, 2014, 8: 3724–3734

    Article  MathSciNet  Google Scholar 

  52. Hercule K M, Wei Q, Khan A M, et al. Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability. Nano Letters, 2013, 13: 5685–5691

    Article  Google Scholar 

  53. Zhao C, Wang X, Wang S, et al. Synthesis of Co(OH)2/graphene/Ni foam nano-electrodes with excellent pseudocapacitive behavior and high cycling stability for supercapacitors. Int J Hydrogen Energy, 2012, 37: 11846–11852

    Article  Google Scholar 

  54. Choi B G, Yang M, Jung S C, et al. Enhanced pseudocapacitance of ionic liquid/cobalt hydroxide nanohybrids. ACS Nano, 2013, 7: 2453–2460

    Article  Google Scholar 

  55. Pan G X, Xia X, Cao F, et al. Porous Co(OH)2/Ni composite nanoflake array for high performance supercapacitors. Electrochim Acta, 2012, 63: 335–340

    Article  Google Scholar 

  56. Tai Dam D, Lee J M. Ultrahigh pseudocapacitance of mesoporous nidoped Co(OH)2/ITO nanowires. Nano Energy, 2013, 2: 1186–1196

    Article  Google Scholar 

  57. Liu X M, Zhang Y H, Zhang X G, et al. Studies on Me/Al-layered double hydroxides (Me=Ni and Co) as electrode materials for electrochemical capacitors. Electrochim Acta, 2004, 49: 3137–3141

    Article  Google Scholar 

  58. Gupta V, Gupta S, Miura N. Potentiostatically deposited nanostructured CoxNi1-x layered double hydroxides as electrode materials for redox-supercapacitors. J Power Sources, 2008, 175: 680–685

    Article  Google Scholar 

  59. Hu Z A, Xie Y L, Wang Y X, et al. Synthesis and electrochemical characterization of mesoporous CoxNi1-x layered double hydroxides as electrode materials for supercapacitors. Electrochim Acta, 2009, 54: 2737–2741

    Article  Google Scholar 

  60. Sebastian M, Nethravathi C, Rajamathi M. Interstratified hybrids of α-hydroxides of nickel and cobalt as supercapacitor electrode materials. Mater Res Bull, 2013, 48: 2715–2719

    Article  Google Scholar 

  61. Liu X, Huang J, Wei X, et al. Preparation and electrochemical performances of nanostructured CoxNi1-x(OH)2 composites for supercapacitors. J Power Sources, 2013, 240: 338–343

    Article  Google Scholar 

  62. Roldán S, Granda M, Menéndez R, et al. Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redoxactive electrolyte. J Phys Chem C, 2011, 115: 17606–17611

    Article  Google Scholar 

  63. Roldan S, Blanco C, Granda M, et al. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew Chem Intern Ed, 2011, 50: 1699–1701

    Article  Google Scholar 

  64. Roldán S, González Z, Blanco C, et al. Redox-active electrolyte for carbon nanotube-based electric double layer capacitors. Electrochim Acta, 2011, 56: 3401–3405

    Article  Google Scholar 

  65. Roldán S, Granda M, Menéndez R, et al. Supercapacitor modified with methylene blue as redox active electrolyte. Electrochim Acta, 2012, 83: 241–246

    Article  Google Scholar 

  66. Lota G, Milczarek G. The effect of lignosulfonates as electrolyte additives on the electrochemical performance of supercapacitors. Electrochem Comm, 2011, 13: 470–473

    Article  Google Scholar 

  67. Zhou J, Yin Y, Mansour A N, et al. Experimental studies of mediatorenhanced polymer electrolyte supercapacitors. Electrochem Solid-State Lett, 2011, 14: A25–A28

    Article  Google Scholar 

  68. Li Q, Li K, Sun C, et al. An investigation of Cu2+ and Fe2+ ions as active materials for electrochemical redox supercapacitors. J Electroanal Chem, 2007, 611: 43–50

    Article  Google Scholar 

  69. Su L H, Zhang X G, Mi C H, et al. Improvement of the capacitive performances for Co–Al layered double hydroxide by adding hexacyanoferrate into the electrolyte. Phys Chem Chem Phys, 2009, 11: 2195–2202

    Article  Google Scholar 

  70. Tian Y, Yan J, Xue R, et al. Capacitive properties of activated carbon in K4Fe(CN)6. J Electrochem Soc, 2011, 158: A818–A821

    Article  Google Scholar 

  71. Zhao C, Zheng W, Wang X, et al. Ultrahigh capacitive performance from both Co(OH)2/graphene electrode and K3Fe(CN)6 electrolyte. Sci Rep, 2013, 3: 2986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or WeiTao Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, W., Chen, H. et al. Towards unlocking high-performance of supercapacitors: From layered transition-metal hydroxide electrode to redox electrolyte. Sci. China Technol. Sci. 58, 1779–1798 (2015). https://doi.org/10.1007/s11431-015-5930-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5930-0

Keywords

Navigation