Skip to main content
Log in

Advances of graphene application in electrode materials for lithium ion batteries

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The demands for better energy storage devices due to fast development of electric vehicles (EVs) have raised increasing attention on lithium ion batteries (LIBs) with high power and energy densities. In this paper, we provide an overview of recent progress in graphene-based electrode materials. Graphene with its great electrical conductivity and mechanical properties have apparently improved the performance of traditional electrode materials. The methods and electrochemical properties of advanced graphene composite as cathode and anode for LIBs are reviewed. Two novel kinds of graphene hybrid materials are specially highlighted: three-dimensional porous and flexible binder-free graphene-based materials. Challenges for LIBs and future research trend in the development of high-performance electrode materials are further discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough J B, Kim Y. Challenges for rechargeable Li batteries†. Chem Mater, 2010, 22: 587–603

    Article  Google Scholar 

  2. Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater, 2005, 4: 366–377

    Article  Google Scholar 

  3. Reddy M V, Subba Rao G V, Chowdari B V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013, 113: 5364–5457

    Article  Google Scholar 

  4. Whittingham M S. Lithium batteries and cathode materials. Chem Rev, 2004, 104: 4271–4302

    Article  Google Scholar 

  5. Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem Soc Rev, 2012, 41: 666–686

    Article  Google Scholar 

  6. Chen K, Song S, Xue D. Beyond graphene: materials chemistry toward high performance inorganic functional materials. J Mater Chem A, 2015, 3: 2441–2453

    Article  Google Scholar 

  7. Chen K, Song S, Liu F, et al. Structural design of graphene for use in electrochemical energy storage devices. Chem Soc Rev, 2015, 44: 6230–6257

    Article  Google Scholar 

  8. Chen K, Sun C, Xue D. Morphology engineering of high performance binary oxide electrodes. Phys Chem Chem Phys, 2015, 17: 732–750

    Article  Google Scholar 

  9. Chen K, Xue D. Chemical reaction and crystallization control on electrode materials for electrochemical energy storage (in Chinese). Sci Sin Tech, 2015, 45: 36–49

    Article  Google Scholar 

  10. Sun C, Xue D. Study on the crystallization process of function inorganic crystal materials (in Chinese). Sci Sin Tech, 2014, 44: 1123–1236

    Article  Google Scholar 

  11. Chen K, Song S, Xue D. An ionic aqueous pseudocapacitor system: Electroactive ions in both a salt electrode and redox electrolyte. RSC Adv, 2014, 4: 23338–22343

    Article  Google Scholar 

  12. Xu C, Xu B, Gu Y, et al. Graphene-based electrodes for electrochemical energy storage. Energy Environ Sci, 2013, 6: 1388

    Article  Google Scholar 

  13. Peng Z S, Wan C R, Jiang C Y. Synthesis by sol–gel process and characterization of LiCoO2 cathode materials. J Power Sources, 1998, 72: 215–220

    Article  Google Scholar 

  14. Dahn J R, Fuller E W, Obrovac M, et al. Thermal stability of LixCoO2, LixNiO2 and λ -MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics, 1994, 69: 265–270

    Article  Google Scholar 

  15. Tian J, Jin Y, Guan Y, et al. Application prospects of high-voltage cathode materials in all-solid-state lithium-ion batteries. Chin Sci Bull, 2014, 59: 1950–1963

    Article  Google Scholar 

  16. Andersson A S, Kalska B, Häggström L, et al. Lithium extraction/ insertion in LiFePO4: An X-ray diffraction and Mössbauer spectroscopy study. Solid State Ionics, 2000, 130: 41–52

    Article  Google Scholar 

  17. Shi S, Liu L, Ouyang C, et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys Rev B, 2003, 68: 195108

    Article  Google Scholar 

  18. Barker J, Pynenburg R, Koksbang R, et al. An electrochemical investigation into the lithium insertion properties of LixCoO2. Electrochim Acta, 1996, 41: 2481–2488

    Article  Google Scholar 

  19. Cao F, Prakash J. A comparative electrochemical study of LiMn2O4 spinel thin-film and porous laminate. Electrochim Acta, 2002, 47: 1607–1613

    Article  Google Scholar 

  20. Ding B, Ji G, Sha Z, et al. Dual-carbon network for the effective transport of charged species in a LiFePO4 cathode for lithium-ion batteries. Energy Technol, 2015, 3: 63–69

    Article  Google Scholar 

  21. Lin M, Chen Y, Chen B, et al. Morphology-controlled synthesis of self-assembled LiFePO4/C/RGO for high-performance Li-Ion batteries. ACS Appl Mater Inter, 2014, 6: 17556–17563

    Article  Google Scholar 

  22. Li X, Li T, Zhang Y, et al. Graphene nanoribbon-wrapping LiFePO4 by electrostatic absorbing with improved electrochemical performance for rechargeable lithium batteries. Electrochim Acta, 2014, 139: 69–75

    Article  Google Scholar 

  23. Fan Q, Lei L, Xu X, et al. Direct growth of FePO4/graphene and LiFePO4/graphene hybrids for high rate Li-ion batteries. J Power Sources, 2014, 257: 65–69

    Article  Google Scholar 

  24. Ding Y, Jiang Y, Xu F, et al. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem Commun, 2010, 12: 10–13

    Article  Google Scholar 

  25. Ha S H, Lee Y J. Core–shell LiFePO4/carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes. Chem Eur J, 2015, 21: 2132–2138

    Article  Google Scholar 

  26. Wang B, Al Abdulla W, Wang D, et al. A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci, 2015, 8: 869–875

    Article  Google Scholar 

  27. Kucinskis G, Bajars G, Kleperis J. Graphene in lithium ion battery cathode materials: A review. J Power Sources, 2013, 240: 66–79

    Article  Google Scholar 

  28. Wang H, Yang Y, Liang Y, et al. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Edit, 2011, 50: 7364–7368

    Article  Google Scholar 

  29. Liu H, Gao P, Fang J, et al. Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. Chem Commun, 2011, 47: 9110–9112

    Article  Google Scholar 

  30. Tarascon J M, Guyomard D. The Li1+xMn2O4/C rocking-chair system: a review. Electrochim Acta, 1993, 38: 1221–1231

    Article  Google Scholar 

  31. Ellis B L, Lee K T, Nazar L F. Positive electrode materials for Li-ion and Li-batteries. Chem Mater, 2010, 22: 691–714

    Article  Google Scholar 

  32. Prabakar S J R, Hwang Y H, Lee B, et al. Graphene-sandwiched LiNi0.5Mn1.5O4 cathode composites for enhanced high voltage performance in Li ion batteries. J Electrochem Soc, 2013, 160: A832–A837

    Article  Google Scholar 

  33. Sreelakshmi K V, Sasi S, Balakrishnan A, et al. Hybrid composites of LiMn2O4–Graphene as rechargeable electrodes in energy storage devices. Energy Technol, 2014, 2: 257–262

    Article  Google Scholar 

  34. Rui X, Zhu J, Sim D, et al. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale, 2011, 3: 4752–4758

    Article  Google Scholar 

  35. Rao V C, Leela Mohana Reddy A, Ishikawa Y, et al. LiNi1/3Co1/3Mn1/3O2–graphene composite as a promising cathode for lithium-ion batteries. ACS Appl Mater Inter, 2011, 3: 2966–2972

    Article  Google Scholar 

  36. Han S, Wu D, Li S, et al. Graphene: A two-dimensional platform for lithium storage. Small, 2013, 9: 1173–1187

    Article  Google Scholar 

  37. Dahn J R, Zheng T, Liu Y, et al. Mechanisms for lithium insertion in carbonaceous materials. Science, 1995, 270: 590–593

    Article  Google Scholar 

  38. Kaskhedikar N A, Maier J. Lithium storage in carbon nanostructures. Adv Mater, 2009, 21: 2664–2680

    Article  Google Scholar 

  39. Pan D, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets. Chem Mater, 2009, 21: 3136–3142

    Article  Google Scholar 

  40. Wu Z S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano, 2011, 5: 5463–5471

    Article  MathSciNet  Google Scholar 

  41. Ma C, Shao X, Cao D. Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: A first-principles study. J Mater Chem, 2012, 22: 8911

    Article  Google Scholar 

  42. Reddy A L, Srivastava A, Gowda S R, et al. Synthesis of nitrogen- doped graphene films for lithium battery application. ACS Nano, 2010, 4: 6337–6342

    Article  Google Scholar 

  43. Wang R, Wang Y, Xu C, et al. Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms. RSC Adv, 2013, 3: 1194–1200

    Article  Google Scholar 

  44. Wang R, Xu C, Sun J, et al. Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl Mater Inter, 2014, 6: 3427–3436

    Article  Google Scholar 

  45. Wang R, Xu C, Du M, et al. Solvothermal-induced self-assembly of Fe2O3/GS aerogels for high Li-storage and excellent stability. Small, 2014, 10: 2260–2269

    Article  Google Scholar 

  46. Wang R, Xu C, Sun J, et al. Three-Dimensional Fe2O3 Nanocubes/ Nitrogen-doped Graphene Aerogels: Nucleation Mechanism and Lithium Storage Properties. Sci Rep, 2014, 4: 7171

    Article  Google Scholar 

  47. Du M, Sun J, Chang J, et al. Synthesis of nitrogen-doped reduced graphene oxide directly from nitrogen-doped graphene oxide as a high-performance lithium ion battery anode. RSC Adv, 2014, 4: 42412–42417

    Article  Google Scholar 

  48. Zhou X, Yin Y X, Wan L J, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Adv Energy Mater, 2012, 2: 1086–1090

    Article  Google Scholar 

  49. Yi R, Zai J, Dai F, et al. Dual conductive network-enabled graphene/ Si–C composite anode with high areal capacity for lithium-ion batteries. Nano Energy, 2014, 6: 211–218

    Article  Google Scholar 

  50. Lee S E, Kim H J, Kim H, et al. Highly robust silicon nanowire/ graphene core-shell electrodes without polymeric binders. Nanoscale, 2013, 5: 8986–8991

    Article  Google Scholar 

  51. Ko M, Chae S, Jeong S, et al. Elastica-Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries. ACS Nano, 2014, 8: 8591–8599

    Article  Google Scholar 

  52. Hassan F M, Elsayed A R, Chabot V, et al. Subeutectic growth of single-crystal silicon nanowires grown on and wrapped with graphene nanosheets: High-performance anode material for lithium-ion battery. ACS Appl Mater Inter, 2014, 6: 13757–13764

    Article  Google Scholar 

  53. Nie A, Gan L Y, Cheng Y, et al. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. ACS Nano, 2013, 7: 6203–6211

    Article  Google Scholar 

  54. Xu C H, Sun J, Gao L. Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J Mater Chem, 2012, 22: 975–979

    Article  Google Scholar 

  55. Xu C, Sun J, Gao L. Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties. Nanoscale, 2012, 4: 5425

    Article  Google Scholar 

  56. Liu Y, Liu P, Wu D, et al. Boron-doped, carbon-coated SnO2/graphene nanosheets for enhanced lithium storage. Chem Eur J, 2015, 21: 5617–5622

    Article  Google Scholar 

  57. Zhou W, Wang J, Zhang F, et al. SnO2 nanocrystals anchored on N-doped graphene for high-performance lithium storage. Chem Commun, 2015, 51: 3660–3662

    Article  Google Scholar 

  58. Behera S K. Enhanced rate performance and cyclic stability of Fe3O4-graphene nanocomposites for Li ion battery anodes. Chem Commun, 2011, 47: 10371–10373

    Article  Google Scholar 

  59. Du M, Xu C, Sun J, et al. Synthesis of a-Fe2O3 nanoparticles from Fe(OH)3 sol and their composite with reduced graphene oxide for lithium ion batteries. J Mater Chem A, 2013, 1: 7154–7158

    Article  Google Scholar 

  60. Yang S, Feng X, Ivanovici S, et al. Fabrication of graphene- encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage. Angew Chem, 2010, 49: 8408–8411

    Article  Google Scholar 

  61. Lai L, Zhu J, Li Z, et al. Co3O4/nitrogen modified graphene electrode as Li-ion battery anode with high reversible capacity and improved initial cycle performance. Nano Energy, 2014, 3: 134–143

    Article  Google Scholar 

  62. Peng L, Feng Y, Bai Y, et al. Designed synthesis of hollow Co3O4 nanoparticles encapsulated in a thin carbon nanosheet array for high and reversible lithium storage. J Mater Chem A, 2015, 3: 8825–8831

    Article  Google Scholar 

  63. Guan X, Nai J, Zhang Y, et al. CoO hollow cube/reduced graphene oxide composites with enhanced lithium storage capability. Chem Mater, 2014, 26: 5958–5964

    Article  Google Scholar 

  64. Rui X, Tan H, Yan Q. Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6: 9889–9924

    Article  Google Scholar 

  65. Chang K, Chen W. L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano, 2011, 5: 4720–4728

    Article  MathSciNet  Google Scholar 

  66. Chang K, Chen W. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun, 2011, 47: 4252–4254

    Article  Google Scholar 

  67. Chang K, Chen W. Single-layer MoS2/graphene dispersed in amorphous carbon: Towards high electrochemical performances in rechargeable lithium ion batteries. J Mater Chem, 2011, 21: 17175

    Article  MathSciNet  Google Scholar 

  68. Jiang Z, Wang C, Du G, et al. In situ synthesis of SnS2@graphene nanocomposites for rechargeable lithium batteries. J Mater Chem, 2012, 22: 9494

    Article  Google Scholar 

  69. Jiang L, Fan Z. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale, 2014, 6: 1922–1945

    Article  Google Scholar 

  70. Xu Y, Sheng K, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4: 4324–4330

    Article  Google Scholar 

  71. Worsley M A, Pauzauskie P J, Olson T Y, et al. Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc, 2010, 132: 14067–14069

    Article  Google Scholar 

  72. Zhang X, Sui Z, Xu B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem, 2011, 21: 6494

    Article  Google Scholar 

  73. Chen W, Li S, Chen C, et al. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/ nanoparticle aerogel. Adv Mater, 2011, 23: 5679–5683

    Article  Google Scholar 

  74. Wei W, Yang S, Zhou H, et al. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater, 2013, 25: 2909–2914

    Article  Google Scholar 

  75. Gong Y, Yang S, Liu Z, et al. Graphene-network-backboned architectures for high-performance lithium storage. Adv Mater, 2013, 25: 3979–3984

    Article  Google Scholar 

  76. Gong Y, Yang S, Zhan L, et al. A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv Funct Mater, 2014, 24: 125–130

    Article  Google Scholar 

  77. Chang Y H, Li J, Wang B, et al. Synthesis of 3D nitrogen-doped graphene/Fe3O4 by a metal ion induced self-assembly process for high-performance Li-ion batteries. J Mater Chem A, 2013, 1: 14658–14665

    Article  Google Scholar 

  78. Zhang M, Wang Y, Jia M. Three-dimensional reduced graphene oxides hydrogel anchored with ultrafine CoO nanoparticles as anode for lithium ion batteries. Electrochim Acta, 2014, 129: 425–432

    Article  Google Scholar 

  79. Jiang X, Yang X, Zhu Y, et al. 3D nitrogen-doped graphene foams embedded with ultrafine TiO2 nanoparticles for high-performance lithium-ion batteries. J Mater Chem A, 2014, 2: 11124

    Article  Google Scholar 

  80. Jiang X, Yang X, Zhu Y, et al. In situ assembly of graphene sheets-supported SnS2 nanoplates into 3D macroporous aerogels for high-performance lithium ion batteries. J Power Sources, 2013, 237: 178–186

    Article  Google Scholar 

  81. Chen K, Xue D. Preparation of colloidal graphene in quantity by electrochemical exfoliation. J Colloid Interf Sci, 2014, 436: 41–46

    Article  Google Scholar 

  82. Chen K, Xue D. In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO2. J Colloid Interf Sci, 2015, 446: 77–83

    Article  Google Scholar 

  83. Nam S, Yang S J, Lee S, et al. Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in lithium battery anodes. Carbon, 2015, 85: 289–298

    Article  Google Scholar 

  84. Park S H, Kim H K, Yoon S B, et al. Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy- storage devices. Chem Mater, 2015, 27: 457–465

    Article  Google Scholar 

  85. Choi S H, Kang Y C. Fe3O4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries. Carbon, 2014, 79: 58–66

    Article  Google Scholar 

  86. Zhu J, Yang D, Rui X, et al. Facile preparation of ordered porous graphene-metal oxide@C binder-free electrodes with high Li storage performance. Small, 2013, 9: 3390–3397

    Article  Google Scholar 

  87. Lu X, Wang R, Bai Y, et al. Facile preparation of a three- dimensional Fe3O4/macroporous graphene composite for high-performance Li storage. J Mater Chem A, 2015, 3: 12031–12037

    Article  Google Scholar 

  88. Liu X, Cheng J, Li W, et al. Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite. Nanoscale, 2014, 6: 7817–7822

    Article  Google Scholar 

  89. Ma D, Yuan S, Cao Z. Three-dimensionally macroporous graphene- supported Fe3O4 composite as anode material for Li-ion batteries with long cycling life and ultrahigh rate capability. Chin Sci Bull, 2014, 59: 2017–2023

    Article  Google Scholar 

  90. He Y, Chen W, Gao C, et al. An overview of carbon materials for flexible electrochemical capacitors. Nanoscale, 2013, 5: 8799

    Article  Google Scholar 

  91. Ha S H, Jeong Y S, Lee Y J. Free standing reduced graphene oxide film cathodes for lithium ion batteries. ACS Appl Mater Inter, 2013, 5: 12295–12303

    Article  Google Scholar 

  92. Abouimrane A, Compton O C, Amine K, et al. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J Phys Chem C, 2010, 114: 12800–12804

    Article  Google Scholar 

  93. Hu Y, Li X, Wang J, et al. Free-standing graphene–carbon nanotube hybrid papers used as current collector and binder free anodes for lithium ion batteries. J Power Sources, 2013, 237: 41–46

    Article  Google Scholar 

  94. Liu F, Song S, Xue D, et al. Folded structured graphene paper for high performance electrode materials. Adv Mater, 2012, 24: 1089–1094

    Article  Google Scholar 

  95. Zhao X, Hayner C M, Kung M C, et al. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano, 2011, 5: 8739–8749

    Article  Google Scholar 

  96. Zhao X, Hayner C M, Kung M C, et al. In-plane vacancy-enabled high-power Si-Graphene composite electrode for lithium-ion batteries. Adv Energy Mater, 2011, 1: 1079–1084

    Article  Google Scholar 

  97. Wang R H, Xu C H, Sun J, et al. Flexible free-standing hollow Fe3O4/graphene hybrid films for lithium-ion batteries. J Mater Chem A, 2013, 1: 1794–1800

    Article  Google Scholar 

  98. Liu S, Wang R, Liu M, et al. Fe2O3@SnO2 nanoparticle decorated graphene flexible films as high-performance anode materials for lithium-ion batteries. J Mater Chem A, 2014, 2: 4598

    Article  Google Scholar 

  99. Zhang K, Zhao W, Lee J T, et al. A magnetic field assisted self-assembly strategy towards strongly coupled Fe3O4 nanocrystal/rGO paper for high-performance lithium ion batteries. J Mater Chem A, 2014, 2: 9636

    Article  Google Scholar 

  100. Liang J, Zhao Y, Guo L, et al. Flexible free-standing graphene/SnO2 nanocomposites paper for Li-ion battery. ACS Appl Mater Inter, 2012, 4: 5742–5748

    Article  Google Scholar 

  101. Wang R, Xu C, Sun J, et al. Free-standing and binder-free lithium- ion electrodes based on robust layered assembly of graphene and Co3O4 nanosheets. Nanoscale, 2013, 5: 6960

    Article  Google Scholar 

  102. Huang X L, Wang R Z, Xu D, et al. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv Funct Mater, 2013, 23: 4345–4353

    Article  Google Scholar 

  103. Wang R, Xu C, Sun J, et al. Heat-induced formation of porous and free-standing MoS2/GS hybrid electrodes for binder-free and ultralong- life lithium ion batteries. Nano Energy, 2014, 8: 183–195

    Article  MathSciNet  Google Scholar 

  104. Zeng G, Shi N, Hess M, et al. A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano, 2015, 9: 4227–4235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Jin, X. & Sun, J. Advances of graphene application in electrode materials for lithium ion batteries. Sci. China Technol. Sci. 58, 1829–1840 (2015). https://doi.org/10.1007/s11431-015-5927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5927-8

Keywords

Navigation