Skip to main content

Graphene-Based Materials with Tailored Nanostructures for Lithium-Ion Batteries

  • Chapter
  • First Online:
Nano-Bio- Electronic, Photonic and MEMS Packaging
  • 661 Accesses

Abstract

Graphene has demonstrated great potential to tackle the challenges facing lithium-ion batteries (LIBs) due to its unique physical and electronic properties. In this chapter, most recent advances in the rational design and preparation of graphene-containing nanocomposites containing a wide range of electrode materials for LIBs are presented. The synthetic routes to graphene-containing electrodes as well as their structural configurations and electrochemical performances are highlighted. The lithium storage properties of the hybrids and the multiple functions of graphene are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chu, S., Cui, Y., Liu, N.: The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2017)

    Article  CAS  Google Scholar 

  2. Grey, C.P., Tarascon, J.M.: Sustainability and in situ monitoring in battery development. Nat. Mater. 16(1), 45–56 (2017)

    Article  CAS  Google Scholar 

  3. Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., Zhang, X.: A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 7(12), 3857–3886 (2014)

    Article  CAS  Google Scholar 

  4. Choi, J.W., Aurbach, D.: Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)

    Article  CAS  Google Scholar 

  5. Saw, L.H., Ye, Y., Tay, A.A.O.: Integration issues of lithium-ion battery into electric vehicles battery pack. J. Clean. Prod. 113, 1032–1045 (2016)

    Article  CAS  Google Scholar 

  6. Kim, T.-H., Park, J.-S., Chang, S.K., Choi, S., Ryu, J.H., Song, H.-K.: The current move of Lithium ion batteries towards the next phase. Adv. Energy Mater. 2(7), 860–872 (2012)

    Article  CAS  Google Scholar 

  7. Xia, X.-F., Gu, Y.-Y., Xu, S.-A.: Titanium conversion coatings on the aluminum foil AA 8021 used for lithium–ion battery package. Appl. Surf. Sci. 419, 447–453 (2017)

    Article  CAS  Google Scholar 

  8. Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)

    Article  CAS  Google Scholar 

  9. Chen, K., Song, S., Liu, F., Xue, D.: Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 44(17), 6230–6257 (2015)

    Article  CAS  Google Scholar 

  10. Raccichini, R., Varzi, A., Passerini, S., Scrosati, B.: The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271–279 (2015)

    Article  CAS  Google Scholar 

  11. de las Casas, C., Li, W.: A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources. 208, 74–85 (2012)

    Article  CAS  Google Scholar 

  12. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010)

    Article  CAS  Google Scholar 

  13. Wang, G., Shen, X., Yao, J., Park, J.: Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon. 47(8), 2049–2053 (2009)

    Article  CAS  Google Scholar 

  14. Dahn, J.R., Zheng, T., Liu, Y., Xue, J.S.: Mechanisms for lithium insertion in carbonaceous materials. Science. 270(5236), 590–593 (1995)

    Article  CAS  Google Scholar 

  15. Li, X., Hu, Y., Liu, J., Lushington, A., Li, R., Sun, X.: Structurally tailored graphene nanosheets as lithium ion battery anodes: an insight to yield exceptionally high lithium storage performance. Nanoscale. 5(24), 12607–12615 (2013)

    Article  CAS  Google Scholar 

  16. Yoo, E., Kim, J., Hosono, E., Zhou, H.-s., Kudo, T., Honma, I.: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8(8), 2277–2282 (2008)

    Article  CAS  Google Scholar 

  17. Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W., Wang, H.: Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta. 55(12), 3909–3914 (2010)

    Article  CAS  Google Scholar 

  18. Ma, X., Ning, G., Qi, C., Xu, C., Gao, J.: Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for Lithium-ion batteries. Acs Appl. Mater. Interfaces. 6(16), 14415–14422 (2014)

    Article  CAS  Google Scholar 

  19. Wu, Z.-S., Ren, W., Xu, L., Li, F., Cheng, H.-M.: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano. 5(7), 5463–5471 (2011)

    Article  CAS  Google Scholar 

  20. Reddy, A.L.M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., Ajayan, P.M.: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano. 4(11), 6337–6342 (2010)

    Article  CAS  Google Scholar 

  21. Hu, T., Sun, X., Sun, H., Xin, G., Shao, D., Liu, C., Lian, J.: Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability. Phys. Chem. Chem. Phys. 16(3), 1060–1066 (2014)

    Article  CAS  Google Scholar 

  22. Yan, Y., Yin, Y.-X., Xin, S., Guo, Y.-G., Wan, L.-J.: Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chem. Commun. 48(86), 10663–10665 (2012)

    Article  CAS  Google Scholar 

  23. Ma, C., Shao, X., Cao, D.: Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J. Mater. Chem. 22(18), 8911–8915 (2012)

    Article  CAS  Google Scholar 

  24. Cohn, A.P., Oakes, L., Carter, R., Chatterjee, S., Westover, A.S., Share, K., Pint, C.L.: Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes. Nanoscale. 6(9), 4669–4675 (2014)

    Article  CAS  Google Scholar 

  25. Zhong, C., Wang, J.-Z., Wexler, D., Liu, H.-K.: Microwave autoclave synthesized multi-layer graphene/single-walled carbon nanotube composites for free-standing lithium-ion battery anodes. Carbon. 66(0), 637–645 (2014)

    CAS  Google Scholar 

  26. Vinayan, B.P., Nagar, R., Raman, V., Rajalakshmi, N., Dhathathreyan, K.S., Ramaprabhu, S.: Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application. J. Mater. Chem. 22(19), 9949–9956 (2012)

    Article  CAS  Google Scholar 

  27. Park, K.H., Lee, D., Kim, J., Song, J., Lee, Y.M., Kim, H.-T., Park, J.-K.: Defect-free, size-tunable graphene for high-performance lithium ion battery. Nano Lett. 14(8), 4306–4313 (2014)

    Article  CAS  Google Scholar 

  28. Lee, S.H., Sridhar, V., Jung, J.H., Karthikeyan, K., Lee, Y.S., Mukherjee, R., Koratkar, N., Oh, I.K.: Graphene--nanotube--iron hierarchical nanostructure as lithium ion battery anode. ACS Nano. 7(5), 4242–4251 (2013)

    Article  CAS  Google Scholar 

  29. Xu, C., Xu, B., Gu, Y., Xiong, Z., Sun, J., Zhao, X.S.: Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6(5), 1388–1414 (2013)

    Article  CAS  Google Scholar 

  30. Palacin, M.R.: Recent advances in rechargeable battery materials: a chemist’s perspective. Chem. Soc. Rev. 38(9), 2565–2575 (2009)

    Article  CAS  Google Scholar 

  31. Wu, H., Cui, Y.: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today. 7(5), 414–429 (2012)

    Article  CAS  Google Scholar 

  32. Chan, C.K., Zhang, X.F., Cui, Y.: High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 8(1), 307–309 (2007)

    Article  CAS  Google Scholar 

  33. Beaulieu, L.Y., Eberman, K.W., Turner, R.L., Krause, L.J., Dahn, J.R.: Colossal reversible volume changes in Lithium alloys. Electrochem. Solid-State Lett. 4(9), A137–A140 (2001)

    Article  CAS  Google Scholar 

  34. Kasavajjula, U., Wang, C., Appleby, A.J.: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources. 163(2), 1003–1039 (2007)

    Article  CAS  Google Scholar 

  35. He, Y.-S., Gao, P., Chen, J., Yang, X., Liao, X.-Z., Yang, J., Ma, Z.-F.: A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries. RSC Adv. 1(6), 958–960 (2011)

    Article  CAS  Google Scholar 

  36. Zhou, X., Bao, J., Dai, Z., Guo, Y.-G.: Tin nanoparticles impregnated in nitrogen-doped graphene for Lithium-ion battery anodes. J. Phys. Chem. C. 117(48), 25367–25373 (2013)

    Article  CAS  Google Scholar 

  37. Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., Huang, J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 6(2), 1522–1531 (2012)

    Article  CAS  Google Scholar 

  38. Ko, M., Chae, S., Jeong, S., Oh, P., Cho, J.: Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano. 8(8), 8591–8599 (2014)

    Article  CAS  Google Scholar 

  39. Wong, D.P., Tseng, H.-P., Chen, Y.-T., Hwang, B.-J., Chen, L.-C., Chen, K.-H.: A stable silicon/graphene composite using solvent exchange method as anode material for lithium ion batteries. Carbon. 63, 397–403 (2013)

    Article  CAS  Google Scholar 

  40. Yang, S., Li, G., Zhu, Q., Pan, Q.: Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode. J. Mater. Chem. 22(8), 3420–3425 (2012)

    Article  CAS  Google Scholar 

  41. Zhou, X., Yin, Y.-X., Wan, L.-J., Guo, Y.-G.: Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Adv. Energy Mater. 2(9), 1086–1090 (2012)

    Article  CAS  Google Scholar 

  42. Li, Y., Yan, K., Lee, H.-W., Lu, Z., Liu, N., Cui, Y.: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy. 1, 15029 (2016)

    Article  CAS  Google Scholar 

  43. Chen, J.S., Archer, L.A., Wen Lou, X.: SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. J. Mater. Chem. 21(27), 9912–9924 (2011)

    Article  CAS  Google Scholar 

  44. Wang, D., Li, X., Yang, J., Wang, J., Geng, D., Li, R., Cai, M., Sham, T.-K., Sun, X.: Hierarchical nanostructured core-shell Sn@C nanoparticles embedded in graphene nanosheets: spectroscopic view and their application in lithium ion batteries. Phys. Chem. Chem. Phys. 15(10), 3535–3542 (2013)

    Article  CAS  Google Scholar 

  45. Luo, B., Wang, B., Li, X., Jia, Y., Liang, M., Zhi, L.: Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater. 24(26), 3538–3543 (2012)

    Article  CAS  Google Scholar 

  46. Lu, Z., Zhu, J., Sim, D., Shi, W., Tay, Y.Y., Ma, J., Hng, H.H., Yan, Q.: In situ growth of Si nanowires on graphene sheets for Li-ion storage. Electrochim. Acta. 74, 176–181 (2012)

    Article  CAS  Google Scholar 

  47. Wang, X.-L., Han, W.-Q.: Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires. Acs Appl. Mater. Inter. 2(12), 3709–3713 (2010)

    Article  CAS  Google Scholar 

  48. Ren, J.-G., Wang, C., Wu, Q.-H., Liu, X., Yang, Y., He, L., Zhang, W.: A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material. Nanoscale. 6(6), 3353–3360 (2014)

    Article  CAS  Google Scholar 

  49. Wu, P., Wang, H., Tang, Y., Zhou, Y., Lu, T.: Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: in situ Magnesiothermic-reduction synthesis and enhanced Lithium-storage capabilities. Acs Appl. Mater. Inter. 6(5), 3546–3552 (2014)

    Article  CAS  Google Scholar 

  50. Ge, M., Rong, J., Fang, X., Zhang, A., Lu, Y., Zhou, C.: Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 6(3), 174–181 (2013)

    Article  CAS  Google Scholar 

  51. Ji, L., Tan, Z., Kuykendall, T., An, E.J., Fu, Y., Battaglia, V., Zhang, Y.: Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage. Energy Environ. Sci. 4(9), 3611–3616 (2011)

    Article  CAS  Google Scholar 

  52. Luo, B., Wang, B., Liang, M.H., Ning, J., Li, X.L., Zhi, L.J.: Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Adv. Mater. 24(11), 1405–1409 (2012)

    Article  CAS  Google Scholar 

  53. Kim, H., Son, Y., Park, C., Cho, J., Choi, H.C.: Catalyst-free direct growth of a single to a few layers of graphene on a germanium nanowire for the anode material of a lithium battery. Angew. Chem. Int. Ed. 52(23), 5997–6001 (2013)

    Article  CAS  Google Scholar 

  54. Chockla, A.M., Panthani, M.G., Holmberg, V.C., Hessel, C.M., Reid, D.K., Bogart, T.D., Harris, J.T., Mullins, C.B., Korgel, B.A.: Electrochemical lithiation of graphene-supported silicon and germanium for rechargeable batteries. J. Phys. Chem. C. 116(22), 11917–11923 (2012)

    Article  CAS  Google Scholar 

  55. Chou, C.-Y., Hwang, G.S.: Role of interface in the lithiation of silicon-graphene composites: a first principles study. J. Phys. Chem. C. 117(19), 9598–9604 (2013)

    Article  CAS  Google Scholar 

  56. Odbadrakh, K., McNutt, N.W., Nicholson, D.M., Rios, O., Keffer, D.J.: Lithium diffusion at Si-C interfaces in silicon-graphene composites. Appl. Phys. Lett. 105(5), (2014)

    Google Scholar 

  57. Li, Z.-F., Zhang, H., Liu, Q., Liu, Y., Stanciu, L., Xie, J.: Novel pyrolyzed polyaniline-grafted silicon nanoparticles encapsulated in graphene sheets as Li-ion battery anodes. Acs Appl. Mater. Inter. 6(8), 5996–6002 (2014)

    Article  CAS  Google Scholar 

  58. Wen, Y., Zhu, Y., Langrock, A., Manivannan, A., Ehrman, S.H., Wang, C.: Graphene-bonded and -encapsulated Si nanoparticles for lithium ion battery anodes. Small. 9(16), 2810–2816 (2013)

    Article  CAS  Google Scholar 

  59. Park, S.-H., Kim, H.-K., Ahn, D.-J., Lee, S.-I., Roh, K.C., Kim, K.-B.: Self-assembly of Si entrapped graphene architecture for high-performance Li-ion batteries. Electrochem. Commun. 34, 117–120 (2013)

    Article  CAS  Google Scholar 

  60. Tang, H., Tu, J.-p., Liu, X.-y., Zhang, Y.-j., Huang, S., Li, W.-z., Wang, X.-l., Gu, C.-d.: Self-assembly of Si/honeycomb reduced graphene oxide composite film as a binder-free and flexible anode for Li-ion batteries. J. Mater. Chem. A. 2(16), 5834–5840 (2014)

    Article  CAS  Google Scholar 

  61. Chang, J., Huang, X., Zhou, G., Cui, S., Hallac, P.B., Jiang, J., Hurley, P.T., Chen, J.: Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Adv. Mater. 26(5), 758–764 (2014)

    Article  CAS  Google Scholar 

  62. Zhou, M., Cai, T., Pu, F., Chen, H., Wang, Z., Zhang, H., Guan, S.: Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries. Acs Appl. Mater. Inter. 5(8), 3449–3455 (2013)

    Article  CAS  Google Scholar 

  63. Yi, R., Zai, J., Dai, F., Gordin, M.L., Wang, D.: Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries. Nano Energy. 6, 211–218 (2014)

    Article  CAS  Google Scholar 

  64. Xu, Z.-L., Zhang, B., Kim, J.-K.: Electrospun carbon nanofiber anodes containing monodispersed Si nanoparticles and graphene oxide with exceptional high rate capacities. Nano Energy. 6, 27–35 (2014)

    Article  CAS  Google Scholar 

  65. Shin, J., Park, K., Ryu, W.-H., Jung, J.-W., Kim, I.-D.: Graphene wrapping as a protective clamping layer anchored to carbon nanofibers encapsulating Si nanoparticles for a Li-ion battery anode. Nanoscale. 6(21), 12718–12726 (2014)

    Article  CAS  Google Scholar 

  66. Qin, J., He, C., Zhao, N., Wang, Z., Shi, C., Liu, E.-Z., Li, J.: Graphene networks anchored with Sn@graphene as Lithium ion battery anode. ACS Nano. 8(2), 1728–1738 (2014)

    Article  CAS  Google Scholar 

  67. Zhou, X.S., Bao, J.C., Dai, Z.H., Guo, Y.G.: Tin nanoparticles impregnated in nitrogen-doped graphene for Lithium-ion battery anodes. J. Phys. Chem. C. 117(48), 25367–25373 (2013)

    Article  CAS  Google Scholar 

  68. Yuan, F.-W., Tuan, H.-Y.: Scalable solution-grown high-germanium-nanoparticle-loading graphene nanocomposites as high-performance lithium-ion battery electrodes: an example of a graphene-based platform toward practical full-cell applications. Chem. Mater. 26(6), 2172–2179 (2014)

    Article  CAS  Google Scholar 

  69. Qin, J., Wang, X., Cao, M., Hu, C.: Germanium quantum dots embedded in N-doping graphene matrix with sponge-like architecture for enhanced performance in lithium-ion batteries. Chem-Eur. J. 20(31), 9675–9682 (2014)

    Article  CAS  Google Scholar 

  70. Li, D., Seng, K.H., Shi, D., Chen, Z., Liu, H.K., Guo, Z.: A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries. J. Mater. Chem. A. 1(45), 14115–14121 (2013)

    Article  CAS  Google Scholar 

  71. Ouyang, L.Z., Guo, L.N., Cai, W.H., Ye, J.S., Hu, R.Z., Liu, J.W., Yang, L.C., Zhu, M.: Facile synthesis of Ge@FLG composites by plasma assisted ball milling for lithium ion battery anodes. J. Mater. Chem. A. 2(29), 11280–11285 (2014)

    Article  CAS  Google Scholar 

  72. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 407(6803), 496–499 (2000)

    Article  CAS  Google Scholar 

  73. Reddy, M., Subba Rao, G., Chowdari, B.: Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013)

    Article  CAS  Google Scholar 

  74. Wu, Z.-S., Zhou, G., Yin, L.-C., Ren, W., Li, F., Cheng, H.-M.: Graphene/metal oxide composite electrode materials for energy storage. Nano Energy. 1(1), 107–131 (2012)

    Article  CAS  Google Scholar 

  75. Guan-Nan Zhu, Y.-G.W.: Yong-Yao Xia: Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 5, 6652–6667 (2012)

    Article  CAS  Google Scholar 

  76. Han, C., He, Y.-B., Wang, S., Wang, C., Du, H., Qin, X., Lin, Z., Li, B., Kang, F.: Large polarization of Li4Ti5O12 lithiated to 0 V at large charge/discharge rates. Acs Appl. Mater. Inter. 8(29), 18788–18796 (2016)

    Article  CAS  Google Scholar 

  77. Du, G., Guo, Z., Zhang, P., Li, Y., Chen, M., Wexler, D., Liu, H.: SnO2 nanocrystals on self-organized TiO2 nanotube array as three-dimensional electrode for lithium ion microbatteries. J. Mater. Chem. 20(27), 5689–5694 (2010)

    Article  CAS  Google Scholar 

  78. Deng, D., Kim, M.G., Lee, J.Y., Cho, J.: Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2(8), 818–837 (2009)

    Article  CAS  Google Scholar 

  79. Cabana, J., Monconduit, L., Larcher, D., Palacín, M.R.: Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22(35), E170–E192 (2010)

    Article  CAS  Google Scholar 

  80. Deng, Y., Wan, L., Xie, Y., Qin, X., Chen, G.: Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Adv. 4(45), 23914–23935 (2014)

    Article  CAS  Google Scholar 

  81. Wu, S., Han, C., Iocozzia, J., Lu, M., Ge, R., Xu, R., Lin, Z.: Germanium-based nanomaterials for rechargeable batteries. Angew. Chem. Int. Ed. 55(28), 7898–7922 (2016)

    Article  CAS  Google Scholar 

  82. Shi, Y., Wen, L., Li, F., Cheng, H.-M.: Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. J. Power Sources. 196(20), 8610–8617 (2011)

    Article  CAS  Google Scholar 

  83. Ding, Y., Li, G.R., Xiao, C.W., Gao, X.P.: Insight into effects of graphene in Li4Ti5O12/carbon composite with high rate capability as anode materials for lithium ion batteries. Electrochim. Acta. 102, 282–289 (2013)

    Article  CAS  Google Scholar 

  84. Dong, H.-Y., He, Y.-B., Li, B., Zhang, C., Liu, M., Su, F., Lv, W., Kang, F., Yang, Q.-H.: Lithium titanate hybridized with trace amount of graphene used as an anode for a high rate lithium ion battery. Electrochim. Acta. 142(0), 247–253 (2014)

    Article  CAS  Google Scholar 

  85. Qiu, B., Xing, M., Zhang, J.: Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136(16), 5852–5855 (2014)

    Article  CAS  Google Scholar 

  86. Tang, Y., Liu, Z., Lu, X., Wang, B., Huang, F.: TiO2 nanotubes grown on graphene sheets as advanced anode materials for high rate lithium ion batteries. RSC Adv. 4(68), 36372–36376 (2014)

    Article  CAS  Google Scholar 

  87. Li, Y., Wang, Z., Lv, X.-J.: N-doped TiO2 nanotubes/N-doped graphene nanosheets composites as high performance anode materials in lithium-ion battery. J. Mater. Chem. A. 2(37), 15473–15479 (2014)

    Article  CAS  Google Scholar 

  88. Etacheri, V., Yourey, J.E., Bartlett, B.M.: Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. ACS Nano. 8(2), 1491–1499 (2014)

    Article  CAS  Google Scholar 

  89. Wu, Z.-S., Ren, W., Wen, L., Gao, L., Zhao, J., Chen, Z., Zhou, G., Li, F., Cheng, H.-M.: Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano. 4(6), 3187–3194 (2010)

    Article  CAS  Google Scholar 

  90. Sun, H., Sun, X., Hu, T., Yu, M., Lu, F., Lian, J.: Graphene-wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries. J. Phys. Chem. C. 118(5), 2263–2272 (2014)

    Article  CAS  Google Scholar 

  91. Tao, L., Zai, J., Wang, K., Zhang, H., Xu, M., Shen, J., Su, Y., Qian, X.: Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J. Power Sources. 202, 230–235 (2012)

    Article  CAS  Google Scholar 

  92. Sun, H., Liu, Y., Yu, Y., Ahmad, M., Nan, D., Zhu, J.: Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries. Electrochim. Acta. 118, 1–9 (2014)

    Google Scholar 

  93. Sun, Y., Hu, X., Luo, W., Xia, F., Huang, Y.: Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 23(19), 2436–2444 (2013)

    Article  CAS  Google Scholar 

  94. Zhang, K., Han, P., Gu, L., Zhang, L., Liu, Z., Kong, Q., Zhang, C., Dong, S., Zhang, Z., Yao, J., et al.: Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. Acs Appl. Mater. Inter. 4(2), 658–664 (2012)

    Article  CAS  Google Scholar 

  95. Lavoie, N., Malenfant, P.R.L., Courtel, F.M., Abu-Lebdeh, Y., Davidson, I.J.: High gravimetric capacity and long cycle life in Mn3O4/graphene platelet/LiCMC composite lithium-ion battery anodes. J. Power Sources. 213, 249–254 (2012)

    Article  CAS  Google Scholar 

  96. Wang, H., Cui, L.-F., Yang, Y., Casalongue, H.S., Robinson, J.T., Liang, Y., Cui, Y., Dai, H.: Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132(40), 13978–13980 (2010)

    Article  CAS  Google Scholar 

  97. Guo, C.X., Wang, M., Chen, T., Lou, X.W., Li, C.M.: A hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high-performance lithium ion batteries. Adv. Energy Mater. 1(5), 736–741 (2011)

    Article  CAS  Google Scholar 

  98. Li, J., Zhao, Y., Wang, N., Ding, Y., Guan, L.: Enhanced performance of a MnO2-graphene sheet cathode for lithium ion batteries using sodium alginate as a binder. J. Mater. Chem. 22(26), 13002–13004 (2012)

    Article  CAS  Google Scholar 

  99. Yu, A., Park, H.W., Davies, A., Higgins, D.C., Chen, Z., Xiao, X.: Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J. Phys. Chem. Lett. 2(15), 1855–1860 (2011)

    Article  CAS  Google Scholar 

  100. Wei, D., Liang, J., Zhu, Y., Yuan, Z., Li, N., Qian, Y.: Formation of graphene-wrapped nanocrystals at room temperature through the colloidal coagulation effect. Part. Part. Syst. Charact. 30(2), 143–147 (2013)

    Article  CAS  Google Scholar 

  101. Zhao, B., Liu, R., Cai, X., Jiao, Z., Wu, M., Ling, X., Lu, B., Jiang, Y.: Nanorod-like Fe2O3/graphene composite as a high-performance anode material for lithium ion batteries. J. Appl. Electrochem. 44(1), 53–60 (2014)

    Google Scholar 

  102. Qu, J., Yin, Y.-X., Wang, Y.-Q., Yan, Y., Guo, Y.-G., Song, W.-G.: Layer structured alpha-Fe2O3 Nanodisk/reduced graphene oxide composites as high-performance anode materials for lithium-ion batteries. Acs Appl. Mater. Inter. 5(9), 3932–3936 (2013)

    Article  CAS  Google Scholar 

  103. Bai, S., Chen, S., Shen, X., Zhu, G., Wang, G.: Nanocomposites of hematite (alpha-Fe2O3) nanospindles with crumpled reduced graphene oxide nanosheets as high-performance anode material for lithium-ion batteries. RSC Adv. 2(29), 10977–10984 (2012)

    Article  CAS  Google Scholar 

  104. Chen, D., Ji, G., Ma, Y., Lee, J.Y., Lu, J.: Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. Acs Appl. Mater. Inter. 3(8), 3078–3083 (2011)

    Article  CAS  Google Scholar 

  105. Hu, A., Chen, X., Tang, Y., Tang, Q., Yang, L., Zhang, S.: Self-assembly of Fe3O4 nanorods on graphene for lithium ion batteries with high rate capacity and cycle stability. Electrochem. Commun. 28, 139–142 (2013)

    Article  CAS  Google Scholar 

  106. Zhao, J., Yang, B., Zheng, Z., Yang, J., Yang, Z., Zhang, P., Ren, W., Yan, X.: Facile preparation of one-dimensional wrapping structure: graphene nanoscroll-wrapped of Fe3O4 nanoparticles and its application for lithium-ion battery. Acs Appl. Mater. Inter. 6(12), 9890–9896 (2014)

    Article  CAS  Google Scholar 

  107. Luo, J., Liu, J., Zeng, Z., Ng, C.F., Ma, L., Zhang, H., Lin, J., Shen, Z., Fan, H.J.: Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 13(12), 6136–6143 (2013)

    Article  CAS  Google Scholar 

  108. Wang, Q., Zhao, J., Shan, W., Xia, X., Xing, L., Xue, X.: CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes. J. Alloys Compd. 590, 424–427 (2014)

    Article  CAS  Google Scholar 

  109. Liu, Y., Wang, W., Gu, L., Wang, Y., Ying, Y., Mao, Y., Sun, L., Peng, X.: Flexible CuO nanosheets/reduced-graphene oxide composite paper: binder-free anode for high-performance lithium-ion batteries. Acs Appl. Mater. Inter. 5(19), 9850–9855 (2013)

    Article  CAS  Google Scholar 

  110. Zhou, X., Shi, J., Liu, Y., Su, Q., Zhang, J., Du, G.: Microwave-assisted synthesis of hollow CuO-Cu2O nanosphere/graphene composite as anode for lithium-ion battery. J. Alloys Compd. 615, 390–394 (2014)

    Article  CAS  Google Scholar 

  111. Xu, Y.T., Guo, Y., Song, L.X., Zhang, K., Yuen, M.M.F., Xu, J.B., Fu, X.Z., Sun, R., Wong, C.P.: Co-reduction self-assembly of reduced graphene oxide nanosheets coated Cu2O sub-microspheres core-shell composites as lithium ion battery anode materials. Electrochim. Acta. 176, 434–441 (2015)

    Article  CAS  Google Scholar 

  112. Xu, Y.T., Guo, Y., Li, C., Zhou, X.Y., Tucker, M.C., Fu, X.Z., Sun, R., Wong, C.P.: Graphene oxide nano-sheets wrapped Cu2O microspheres as improved performance anode materials for lithium ion batteries. Nano Energy. 11, 38–47 (2015)

    Article  CAS  Google Scholar 

  113. Choi, S.H., Ko, Y.N., Lee, J.-K., Kang, Y.C.: Rapid continuous synthesis of spherical reduced graphene ball-nickel oxide composite for lithium ion batteries. Sci. Rep. 4 (2014)

    Google Scholar 

  114. Zhuo, L., Wu, Y., Zhou, W., Wang, L., Yu, Y., Zhang, X., Zhao, F.: Trace amounts of water-induced distinct growth behaviors of NiO nanostructures on graphene in CO2-expanded ethanol and their applications in lithium-ion batteries. Acs Appl. Mater. Inter. 5(15), 7065–7071 (2013)

    Article  CAS  Google Scholar 

  115. Lin, J., Peng, Z., Xiang, C., Ruan, G., Yan, Z., Natelson, D., Tour, J.M.: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano. 7(7), 6001–6006 (2013)

    Article  CAS  Google Scholar 

  116. Zhu, J., Zhang, G., Yu, X., Li, Q., Lu, B., Xu, Z.: Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries. Nano Energy. 3, 80–87 (2014)

    Article  CAS  Google Scholar 

  117. Yang, S., Yue, W., Zhu, J., Ren, Y., Yang, X.: Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv. Funct. Mater. 23(28), 3570–3576 (2013)

    Google Scholar 

  118. Han, Q., Zai, J., Xiao, Y., Li, B., Xu, M., Qian, X.: Direct growth of SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. RSC Adv. 3(43), 20573–20578 (2013)

    Article  CAS  Google Scholar 

  119. Xu, C., Sun, J., Gao, L.: Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J. Mater. Chem. 22(3), 975–979 (2012)

    Article  CAS  Google Scholar 

  120. Guo, Q., Qin, X.: Flower-like SnO2 nanoparticles grown on graphene as anode materials for lithium-ion batteries. J. Solid State Electrochem. 18(4), 1031–1039 (2014)

    Article  CAS  Google Scholar 

  121. Zhao, B., Huang, S.Y., Wang, T., Zhang, K., Yuen, M.M.F., Xu, J.B., Fu, X.Z., Sun, R., Wong, C.P.: Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries. J. Power Sources. 298, 83–91 (2015)

    Article  CAS  Google Scholar 

  122. Zhao, B., Xu, Y.T., Huang, S.Y., Zhang, K., Yuen, M.M.F., Xu, J.B., Fu, X.Z., Sun, R., Wong, C.P.: 3D RGO frameworks wrapped hollow spherical SnO2@Fe2O3 mesoporous nano-shells: fabrication, characterization and lithium storage properties. Electrochim. Acta. 202, 186–196 (2016)

    Article  CAS  Google Scholar 

  123. Liu, S., Wang, R., Liu, M., Luo, J., Jin, X., Sun, J., Gao, L.: Fe2O3@SnO2 nanoparticle decorated graphene flexible films as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A. 2(13), 4598–4604 (2014)

    Article  CAS  Google Scholar 

  124. Yu, M., Wang, A., Wang, Y., Li, C., Shi, G.: An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition. Nanoscale. 6(19), 11419–11424 (2014)

    Article  CAS  Google Scholar 

  125. Hsieh, C.-T., Lin, C.-Y., Chen, Y.-F., Lin, J.-S.: Synthesis of ZnO@graphene composites as anode materials for lithium ion batteries. Electrochim. Acta. 111, 359–365 (2013)

    Article  CAS  Google Scholar 

  126. Li, X., Meng, X., Liu, J., Geng, D., Zhang, Y., Banis, M.N., Li, Y., Yang, J., Li, R., Sun, X., et al.: Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Adv. Funct. Mater. 22(8), 1647–1654 (2012)

    Article  CAS  Google Scholar 

  127. Yang, Y., Han, C., Jiang, B., Iocozzia, J., He, C., Shi, D., Jiang, T., Lin, Z.: Graphene-based materials with tailored nanostructures for energy conversion and storage. Mater. Sci. Eng. R Rep. 102, 1–72 (2016)

    Article  Google Scholar 

  128. Wu, S., Xu, R., Lu, M., Ge, R., Iocozzia, J., Han, C., Jiang, B., Lin, Z.: Graphene-containing nanomaterials for lithium-ion batteries. Adv. Energy Mater. 5(21), 1500400–n/a (2015)

    Article  CAS  Google Scholar 

  129. Kucinskis, G., Bajars, G., Kleperis, J.: Graphene in lithium ion battery cathode materials: a review. J. Power Sources. 240, 66–79 (2013)

    Article  CAS  Google Scholar 

  130. Ma, R., Lu, Z., Wang, C., Wang, H.-E., Yang, S., Xi, L., Chung, J.C.Y.: Large-scale fabrication of graphene-wrapped FeF3 nanocrystals as cathode materials for lithium ion batteries. Nanoscale. 5(14), 6338–6343 (2013)

    Article  CAS  Google Scholar 

  131. Han, S., Wang, J., Li, S., Wu, D., Feng, X.: Graphene aerogel supported Fe5(PO4)4(OH)3·2H2O microspheres as high performance cathode for lithium ion batteries. J. Mater. Chem. A. 2(17), 6174–6179 (2014)

    Article  CAS  Google Scholar 

  132. Fei, H., Peng, Z., Yang, Y., Li, L., Raji, A.-R.O., Samuel, E.L.G., Tour, J.M.: LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes. Chem. Commun. 50(54), 7117–7119 (2014)

    Article  CAS  Google Scholar 

  133. Hu, J., Lei, G., Lu, Z., Liu, K., Sang, S., Liu, H.: Alternating assembly of Ni-Al layered double hydroxide and graphene for high-rate alkaline battery cathode. Chem. Commun. 51(49), 9983–9986 (2015)

    Article  CAS  Google Scholar 

  134. Ma, R., Dong, Y., Xi, L., Yang, S., Lu, Z., Chung, C.: Fabrication of LiF/Fe/graphene nanocomposites as cathode material for lithium-ion batteries. Acs Appl. Mater. Inter. 5(3), 892–897 (2013)

    Article  CAS  Google Scholar 

  135. Guo, X., Fan, Q., Yu, L., Liang, J., Ji, W., Peng, L., Guo, X., Ding, W., Chen, Y.: Sandwich-like LiFePO4/graphene hybrid nanosheets: in situ catalytic graphitization and their high-rate performance for lithium ion batteries. J. Mater. Chem. A. 1(38), 11534–11538 (2013)

    Article  CAS  Google Scholar 

  136. Molenda, J., Stokłosa, A., Bak, T.: Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties. Solid State Ionics. 36(1), 53–58 (1989)

    Article  CAS  Google Scholar 

  137. Barker, J., Pynenburg, R., Koksbang, R., Saidi, M.Y.: An electrochemical investigation into the lithium insertion properties of LixCoO2. Electrochim. Acta. 41(15), 2481–2488 (1996)

    Article  CAS  Google Scholar 

  138. Chung, S.-Y., Bloking, J.T., Chiang, Y.-M.: Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1(2), 123–128 (2002)

    Article  CAS  Google Scholar 

  139. Chung, S.-Y., Chiang, Y.-M.: Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochem. Solid-State Lett. 6(12), A278–A281 (2003)

    Article  CAS  Google Scholar 

  140. Xu, Y.-N., Chung, S.-Y., Bloking, J.T., Chiang, Y.-M., Ching, W.Y.: Electronic structure and electrical conductivity of undoped LiFePO4. Electrochem. Solid-State Lett. 7(6), A131–A134 (2004)

    Article  CAS  Google Scholar 

  141. Prosini, P.P., Lisi, M., Zane, D., Pasquali, M.: Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics. 148(1–2), 45–51 (2002)

    Article  CAS  Google Scholar 

  142. Shimakawa, Y., Numata, T., Tabuchi, J.: Verwey-type transition and magnetic properties of the LiMn2O4Spinels. J. Solid State Chem. 131(1), 138–143 (1997)

    Article  CAS  Google Scholar 

  143. Kawai, H., Nagata, M., Kageyama, H., Tukamoto, H., West, A.R.: 5 V lithium cathodes based on spinel solid solutions Li2Co1+XMn3−XO8: -1≤X≤1. Electrochim. Acta. 45(1–2), 315–327 (1999)

    Article  CAS  Google Scholar 

  144. Wakihara, M., Guohua, L., Ikuta, H., Uchida, T.: Chemical diffusion coefficients of lithium in LiMyMn2 − yO4 (M = Co and Cr). Solid State Ionics. 86–88, Part 2(0), 907–909 (1996)

    Article  Google Scholar 

  145. Yin, S.C., Strobel, P.S., Grondey, H., Nazar, L.F.: Li2.5V2(PO4)3: a room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li2.5V2(PO4)3. Chem. Mater. 16(8), 1456–1465 (2004)

    Article  CAS  Google Scholar 

  146. Rui, X.H., Ding, N., Liu, J., Li, C., Chen, C.H.: Analysis of the chemical diffusion coefficient of lithium ions in Li2.5V2(PO4)3 cathode material. Electrochim. Acta. 55(7), 2384–2390 (2010)

    Google Scholar 

  147. Livage, J.: Vanadium pentoxide gels. Chem. Mater. 3(4), 578–593 (1991)

    Article  CAS  Google Scholar 

  148. Potiron, E., Le Gal La Salle, A., Verbaere, A., Piffard, Y., Guyomard, D.: Electrochemically synthesized vanadium oxides as lithium insertion hosts. Electrochim. Acta. 45(1–2), 197–214 (1999)

    Article  CAS  Google Scholar 

  149. Lantelme, F., Mantoux, A., Groult, H., Lincot, D.: Electrochemical study of phase transition processes in Lithium insertion in V2O5 electrodes. J. Electrochem. Soc. 150(9), A1202–A1208 (2003)

    Article  CAS  Google Scholar 

  150. Wei, W., Lv, W., Wu, M.-B., Su, F.-Y., He, Y.-B., Li, B., Kang, F., Yang, Q.-H.: The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery. Carbon. 57, 530–533 (2013)

    Article  CAS  Google Scholar 

  151. Su, F.-Y., You, C., He, Y.-B., Lv, W., Cui, W., Jin, F., Li, B., Yang, Q.-H., Kang, F.: Flexible and planar graphene conductive additives for lithium-ion batteries. J. Mater. Chem. 20(43), 9644–9650 (2010)

    Article  CAS  Google Scholar 

  152. Hu, L.-H., Wu, F.-Y., Lin, C.-T., Khlobystov, A.N., Li, L.-J.: Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 4 (2013)

    Google Scholar 

  153. Nethravathi, C., Rajamathi, C.R., Rajamathi, M., Gautam, U.K., Wang, X., Golberg, D., Bando, Y.: N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. Acs Appl. Mater. Inter. 5(7), 2708–2714 (2013)

    Article  CAS  Google Scholar 

  154. Liu, H., Yang, W.: Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ. Sci. 4(10), 4000–4008 (2011)

    Article  CAS  Google Scholar 

  155. Yang, S., Gong, Y., Liu, Z., Zhan, L., Hashim, D.P., Ma, L., Vajtai, R., Ajayan, P.M.: Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage. Nano Lett. 13(4), 1596–1601 (2013)

    Article  CAS  Google Scholar 

  156. Lee, J.W., Lim, S.Y., Jeong, H.M., Hwang, T.H., Kang, J.K., Choi, J.W.: Extremely stable cycling of ultra-thin V2O5 nanowire-graphene electrodes for lithium rechargeable battery cathodes. Energy Environ. Sci. 5(12), 9889–9894 (2012)

    Article  CAS  Google Scholar 

  157. Jiang, R., Cui, C., Ma, H.: Using graphene nanosheets as a conductive additive to enhance the rate performance of spinel LiMn2O4 cathode material. Phys. Chem. Chem. Phys. 15(17), 6406–6415 (2013)

    Article  CAS  Google Scholar 

  158. Bak, S.-M., Nam, K.-W., Lee, C.-W., Kim, K.-H., Jung, H.-C., Yang, X.-Q., Kim, K.-B.: Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. J. Mater. Chem. 21(43), 17309–17315 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiping Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, C., Li, H., Chen, J., Li, B., Wong, C.P.(P. (2021). Graphene-Based Materials with Tailored Nanostructures for Lithium-Ion Batteries. In: Wong, C.PP., Moon, Ks.(., Li, Y. (eds) Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer, Cham. https://doi.org/10.1007/978-3-030-49991-4_21

Download citation

Publish with us

Policies and ethics