Skip to main content
Log in

Thermodynamic analysis of a space station remote manipulator with a harmonic drive that considers an integrated thermal protection layer

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

To eliminate anomalies and improve the performance of a space station remote manipulator (SSRM) used in a dynamically changeable thermal environment, we analyze the thermodynamic behavior of an SSRM that considers an integrated thermal protection system (ITPS). Solar radiative heat gain and loss become equally significant as conductive heat transfers through the interior of the SSRM on orbit. A thermodynamic model of the SSRM with a sandwich ITPS structure is established on the coupling between harmonic drive and changeable thermal environment. A motion precision is proposed to evaluate thermodynamic behavior under continuously changeable thermal circumstances. Simulation results indicate that the ITPS with a corrugated sandwich structure reduces the maximum amplitude of angular position errors to 41.6%, which helps improve the motion precision of the SSRM. The feasible regions for the SSRM in the Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) are analyzed, which shows that the proportion of feasible region in LEO is significantly larger than that in GEO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferraiuolo M, Manca O. Heat transfer in a multi-layered thermal protection system under aerodynamic heating. Int J Therm Sci, 2012, 53: 56–70

    Article  Google Scholar 

  2. Chen Z S, Xie W H, Hu P, et al. An effective thermodynamic transformation analysis method for actual irreversible cycle. Sci China Tech Sci, 2013, 56: 2188–2193

    Article  Google Scholar 

  3. Hu P, Liu Y, Zhang Q, et al. Thermodynamic analysis on medium- high temperature solar thermal systems with selective coatings. Sci China Tech Sci, 2013, 56: 3137–3143

    Article  Google Scholar 

  4. Xie G, Qi W, Sundén B, et al. Thermomechanical optimization of lightweight thermal protection system under aerodynamic heating. Appl Therm Eng, 2013, 59: 425–434

    Article  Google Scholar 

  5. Xie G, Zhang F, Sundén B, et al. Constructal design and thermal analysis of microchannel heat sinks with multistage bifurcations in single-phase liquid flow. Appl Therm Eng, 2014, 62: 791–802

    Article  Google Scholar 

  6. Li J, Yan S, Cai R. Thermal analysis of composite solar array subjected to space heat flux. Aerosp Sci Technol, 2013, 27: 84–94

    Article  Google Scholar 

  7. Zhao J, Wu J, Yan S, et al. Dynamic modeling and motion precision analysis of spacecraft manipulator with harmonic drive considering the alternate thermal field in orbit. P I Mech Eng G-J Aer, 2014: doi: 0954410014527267

    Google Scholar 

  8. Goel M, Maciejewski A A, Balakrishnan V. Analyzing unidentified locked-joint failures in kinematically redundant manipulators. J Robotic Syst, 2005, 22: 15–29

    Article  MATH  Google Scholar 

  9. Si X, Chen M, Wang W, et al. Specifying measurement errors for required lifetime estimation performance. Eur J Oper Res, 2013, 231: 631–644

    Article  MathSciNet  Google Scholar 

  10. Wu J, Yan S. An approach to system reliability prediction for mechanical equipment using fuzzy reasoning Petri net. Proc Inst Mech Eng Part O-J Risk Reliab, 2014, 228: 39–51

    Google Scholar 

  11. Si X, Zhou D. A generalized result for degradation model-based reliability estimation. IEEE T Autom Sci Eng, 2014, 11: 632–637

    Article  Google Scholar 

  12. Ghajar M, Darabi J. Evaporative heat transfer analysis of a micro loop heat pipe with rectangular grooves. Int J Therm Sci, 2014, 79: 51–59

    Article  Google Scholar 

  13. Li J, Yan S. Thermally induced vibration of composite solar array with honeycomb panels in low earth orbit. Appl Therm Eng, 2014, 71: 419–432

    Article  Google Scholar 

  14. Zhao J, Yan S, Wu J. Analysis of parameter sensitivity of space manipulator with harmonic drive based on the revised response surface method. Acta Astronaut, 2014, 98: 86–96

    Article  Google Scholar 

  15. Baker D N. Effects of the Sun on the Earth’s environment. J Atmos Sol Terr Phys, 2000, 62: 1669–1681

    Article  Google Scholar 

  16. Grossman E, Gouzman I. Space environment effects on polymers in low earth orbit. Nucl Instrum Meth B, 2003, 208: 48–57

    Article  Google Scholar 

  17. Li P, Cheng H, Qin W. Numerical simulation of temperature field in solar arrays of spacecraft in low earth orbit. Numer Heat Tr A-Appl, 2006, 49: 803–820

    Article  Google Scholar 

  18. Li T, Xu Z, Hu Z, et al. Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system. Carbon, 2010, 48: 924–925

    Article  Google Scholar 

  19. Pulci G, Tirillo J, Marra F, et al. Carbon–phenolic ablative materials for re-entry space vehicles: Manufacturing and properties. Compos Part A-Appl S, 2010, 41: 1483–1490

    Article  Google Scholar 

  20. Li Z, Tang Y, Ding X, et al. Reconstruction and thermal performance analysis of die-bonding filling states for high-power light-emitting diode devices. Appl Therm Eng, 2014, 65: 236–245

    Article  Google Scholar 

  21. Biamino S, Antonini A, Eisenmenger-Sittner C, et al. Multilayer SiC for thermal protection system of space vehicles with decreased thermal conductivity through the thickness. J Eur Ceram Soc, 2010, 30: 1833–1840

    Article  Google Scholar 

  22. Gori F, Corasaniti S, Worek W M, et al. Theoretical prediction of thermal conductivity for thermal protection systems. Appl Therm Eng, 2012, 49: 124–130

    Article  Google Scholar 

  23. Gray A M, Jones A S, Kong A. The thermal design, analysis and testing of the Shuttle remote manipulator arm. In: AIAA 14th Thermophysics Conference, Orlando, Florida, June 4–6, 1979

    Google Scholar 

  24. Foster J A, Aglietti G S. The thermal environment encountered in space by a multifunctional solar array. Aerosp Sci Technol, 2010, 14: 213–219

    Article  Google Scholar 

  25. Li Y, Yun Y, Xiao S. Controller design and experimental investigation of a 3-universal-prismatic-universal compliant manipulator for active vibration isolation. J Vib Control, 2014, doi: 1077546314521442

    Google Scholar 

  26. Liu J, Li Y, Zhang Y, et al. Dynamics and control of a parallel mechanism for active vibration isolation in space station. Nonlinear Dynam, 2014, 76: 1737–1751

    Article  MathSciNet  Google Scholar 

  27. Wang J, Li Y, Zhao X. Inverse kinematics and control of a 7-DOF redundant manipulator based on the closed-loop algorithm. Int J Adv Robot Syst, 2010, 7: 1–9

    MATH  Google Scholar 

  28. Papalexandris M V, Milman M H, Levine M B. Nodal temperature estimation algorithms for nonlinear thermal network models. AIAA J, 2002, 40: 1451–1461

    Article  Google Scholar 

  29. Dai J S, Ding X L, Zou H J. Fundamentals and categorization of metamorphic mechanisms. Chin J Mech Eng-En, 2005, 41: 7–12

    Article  Google Scholar 

  30. Dai J S. Finite displacement screw operators with embedded Chasles’ motion. J Mech Robot, 2012, 4: 041002

    Article  Google Scholar 

  31. Guo S P, Li D X, Meng Y H, et al. Task space control of free-floating space robots using constrained adaptive RBF-NTSM. Sci China Tech Sci, 2014, 57: 828–837.

    Article  Google Scholar 

  32. Lee S, Park C. Experiment-based thermal model for permeable clothing systems under hot air jet impingement conditions. Int J Therm Sci, 2012, 51: 102–111

    Article  Google Scholar 

  33. Wei W, Li X, Wang R, et al. Effects of structure and shape on thermal performance of perforated multi-layer insulation blankets. Appl Therm Eng, 2009, 29: 1264–1266

    Article  Google Scholar 

  34. Chen S P, Chyu M K, Shih T I P. Effects of upstream ramp on the performance of film cooling. Int J Therm Sci, 2011, 50: 1085–1094

    Article  Google Scholar 

  35. Min G. Heat Control Techniques on Satellites. Beijing: Astronautical Publishing House, 1991

    Google Scholar 

  36. Yang X, Ma Q, Yuan G. Handbook of View Factors in Radiant Heat Transfer. Beijing: Nation Defence Industry Publishing House, 1982

    Google Scholar 

  37. Bapanapalli S K, Martinez O M, Gogu C, et al. Analysis and design of corrugated core sandwich panels for thermal protection systems of space vehicles. In: Proceedings of the AIAA Structural Dynamics and Material Conference, Rode Island, May 1–4, 2006

    Google Scholar 

  38. Martinez O A, Sankar B V, Haftka R T, et al. Thermal force and moment determination of an integrated thermal protection system. AIAA J, 2010, 48: 119–128

    Article  Google Scholar 

  39. Martinez O A, Sankar B V, Haftka R T, et al. Two-dimensional orthotropic plate analysis for an integral thermal protection system. AIAA J, 2012, 50: 387–398

    Article  Google Scholar 

  40. Poteet C C, Abu-Khajeel H, Hsu S Y. Preliminary thermale- mechanical sizing of metallic TPS: Process development and sensitivity studies. In: 40th Aerospace Sciences Meetings & Exhibitions, Reno, Nevada, January 14–17, 2002

    Google Scholar 

  41. Moaveni S. Finite Element Analysis Theory and Application with ANSYS. Upper Saddle River, NJ: Pearson Education, 2003

    Google Scholar 

  42. Gogu C, Bapanapalli S K, Haftka R T, et al. Comparison of materials for an integrated thermal protection system for spacecraft reentry. J Spacecraft Rockets, 2009, 46: 501–513

    Article  Google Scholar 

  43. Myers D E, Martin C J, Blosser M L. Parametric weight comparison of advanced metallic. NASA Technical Memorandum, 2000

    Google Scholar 

  44. Laryssa P, Lindsay E, Layi O, et al. International space station robotics: a comparative study of ERA, JEMRMS and MSS. In: The 7th ESA workshop on advanced space technologies for robotics and automation eASTRA, ESTEC, Noordwijk, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShaoZe Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yan, S., Wu, J. et al. Thermodynamic analysis of a space station remote manipulator with a harmonic drive that considers an integrated thermal protection layer. Sci. China Technol. Sci. 58, 1884–1893 (2015). https://doi.org/10.1007/s11431-015-5871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5871-7

Keywords

Navigation