Skip to main content
Log in

Task space control of free-floating space robots using constrained adaptive RBF-NTSM

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Trajectory tracking control of space robots in task space is of great importance to space missions, which require on-orbit manipulations. This paper focuses on position and attitude tracking control of a free-floating space robot in task space. Since neither the nonlinear terms and parametric uncertainties of the dynamic model, nor the external disturbances are known, an adaptive radial basis function network based nonsingular terminal sliding mode (RBF-NTSM) control method is presented. The proposed algorithm combines the nonlinear sliding manifold with the radial basis function to improve control performance. Moreover, in order to account for actuator physical constraints, a constrained adaptive RBF-NTSM, which employs a RBF network to compensate for the limited input is developed. The adaptive updating laws acquired by Lyapunov approach guarantee the global stability of the control system and suppress chattering problems. Two examples are provided using a six-link free-floating space robot. Simulation results clearly demonstrate that the proposed constrained adaptive RBF-NTSM control method performs high precision task based on incomplete dynamic model of the space robots. In addition, the control errors converge faster and the chattering is eliminated comparing to traditional sliding mode control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu X D, Bao Y H X, Ma X R. Optimal path planning of redundant free-floating revolute-jointed space manipulators with seven links. Multibody Syst Dyn, 2013, 29: 41–56

    Article  MathSciNet  Google Scholar 

  2. Liao Y H, Li D K, Tang G J. Translational zero-disturbance curve and its application to zero-disturbance motion planning of space manipulator system. Sci China Tech Sci, 2011, 54: 1234–1239

    Article  MATH  Google Scholar 

  3. Rembala R, Ower C. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience. Acta Astronaut, 2009, 65: 912–920

    Article  Google Scholar 

  4. Dubowsky S, Papadopoulos E. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Trans Rob Autom, 1993, 9: 531–543

    Article  Google Scholar 

  5. Nanos K, Papadopoulos E. On the use of free-floating space robots in the presence of angular momentum. Intel Serv Robot, 2011, 4: 3–15

    Article  Google Scholar 

  6. Papadopoulos E, Dubowsky S. Dynamic singularity in free-floating space robots. J Dyn Syst Meas Contr, 1993, 115: 44–52

    Article  Google Scholar 

  7. Wang H L. On adaptive inverse dynamics for free-floating space manipulators. Robot Auton Syst, 2011, 59: 782–788

    Article  Google Scholar 

  8. Xu W F, Liang B, Xu Y S. Survey of modeling, planning, and ground verification of space robotic systems. Acta Astronaut, 2011, 68: 1629–1649

    Article  Google Scholar 

  9. Moosavian S A A, Papadopoulos E. Free-flying robots in space: An overview of dynamics modeling, planning and control. Robotica, 2007, 25: 537–547

    Article  Google Scholar 

  10. Khaloozadeh H, Homaeinejad M R. Real-time regulated sliding mode controller design of multiple manipulator space free-flying robot. J Mech Sci Technol, 2010, 24: 1337–1351

    Article  Google Scholar 

  11. Arisoy A, Bayrakceken M K, Basturk S. High order sliding mode control of a space robot manipulator. In: International Conference on Recent Advances in Space Technologies. Istanbul, 2011. 833–838

    Chapter  Google Scholar 

  12. Bayramoglu H, Komurcugil H. Nonsingular decoupled terminal sliding-mode control for a class of fourth-order nonlinear systems. Commun Nonlinear Sci Numer Simulat, 2013, 18: 2527–2539

    Article  MathSciNet  Google Scholar 

  13. Zak M. Terminal attractors for addressable memory in neural networks. Phys Lett A, 1988, 133: 18–22

    Article  Google Scholar 

  14. Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control of rigid manipulators. Automatica, 2002, 38: 2159–2167

    Article  MATH  MathSciNet  Google Scholar 

  15. Feng Y, Yu X H, Han F L. On nonsingular terminal sliding-mode control of nonlinear systems. Automatica, 2013, 49: 1715–1722

    Article  MathSciNet  Google Scholar 

  16. Man Z H, Paplinski A P, Wu H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans Automat Contr, 1994, 39: 2464–2469

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhao D Y, Zou T. A finite-time approach to formation control of multiple mobile robots with terminal sliding mode. Int J Syst Sci, 2012, 43: 1998–2014

    Article  MathSciNet  Google Scholar 

  18. Islam S, Liu P X. Output feedback sliding mode control for robot manipulators. Robotica, 2010, 28: 975–987

    Article  Google Scholar 

  19. Jin M L, Lee J, Chang P H, et al. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans Ind Electron, 2009, 56: 3593–3601

    Article  Google Scholar 

  20. Liu H, Li J F. Terminal sliding mode control for spacecraft formation flying. IEEE Trans Aero Elec Sys, 2009, 45: 835–846

    Article  Google Scholar 

  21. Wang J Y, Sun Z W. 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying. Acta Astronaut, 2012, 73: 76–87

    Article  Google Scholar 

  22. Nekoukar V, Erfanian A. Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Set Syst, 2011, 179: 34–49

    Article  MATH  MathSciNet  Google Scholar 

  23. Wang L Y, Chai T Y, Zhai L F. Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans Ind Electron, 2009, 56: 3296–3304

    Article  Google Scholar 

  24. Yoshida K. Engineering test satellite VII flight experiments for space robot dynamics and control: Theories on laboratory test beds ten years ago, now in orbit. Int J Robot Res, 2003, 22: 321–335

    Article  Google Scholar 

  25. Xu W F, Liang B, Xu Y S. Practical approaches to handle the singularities of a wrist-partitioned space manipulator. Acta Astronaut, 2011, 68: 269–300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShengPeng Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, S., Li, D., Meng, Y. et al. Task space control of free-floating space robots using constrained adaptive RBF-NTSM. Sci. China Technol. Sci. 57, 828–837 (2014). https://doi.org/10.1007/s11431-014-5487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5487-3

Keywords

Navigation