Skip to main content
Log in

Multi-objective pigeon-inspired optimization for brushless direct current motor parameter design

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Pigeon-inspired optimization (PIO) is a new swarm intelligence optimization algorithm, which is inspired by the behavior of homing pigeons. A variant of pigeon-inspired optimization named multi-objective pigeon-inspired optimization (MPIO) is proposed in this paper. It is also adopted to solve the multi-objective optimization problems in designing the parameters of brushless direct current motors, which has two objective variables, five design variables, and five constraint variables. Furthermore, comparative experimental results with the modified non-dominated sorting genetic algorithm are given to show the feasibility, validity and superiority of our proposed MIPO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yadav P, Kumar R, Panda S K, et al. Improved harmony search algorithm based optimal design of the brushless DC wheel motor. In: Proceedings of IEEE International Conference on Sustainable Energy Technologies, Kandy, 2010. 1–6

    Google Scholar 

  2. Zhu X Y, Cheng M. Design, analysis and control of hybrid excited doubly salient stator-permanent-magnet motor. Sci China Tech Sci, 2010, 53: 188–199

    Article  MATH  Google Scholar 

  3. Shiadeh S M J, Ardebili M, Moamaei P. Three-dimensional finite- element-model investigation of axial-flux PM BLDC machines with similar pole and slot combination for electric vehicles. In: Proceedings of Power and Energy Conference, Illinois, 2015. 1–4

    Google Scholar 

  4. Dadashnialehi A, Bab-Hadiashar A, Cao Z, et al. Intelligent sensorless antilock braking system for brushless in-wheel electric vehicles. IEEE T Ind Electron, 2014, 62: 1629–1638

    Article  Google Scholar 

  5. Norhisam M, Nazifah A, Aris I, et al. Effect of magnet size on torque characteristic of three-phase permanent magnet brushless DC motor. In: Proceedings of IEEE Student Conference on Research and Development, Putrajaya, 2010. 293–296

    Google Scholar 

  6. Bora T C, Coelho L S, Lebensztajn L. Bat-inspired optimization approach for the brushless DC wheel motor problem. IEEE T Magn, 2012, 48: 947–950

    Article  Google Scholar 

  7. Costa e S, Coelho L S, Lebensztajn L. Multi-objective biogeography-based optimization based on predator-prey approach. IEEE T Magn, 2012, 48: 951–954

    Article  Google Scholar 

  8. Coelho L S, Barbosa L Z, Lebensztajn L. Multi-objective particle swarm approach for the design of a brushless DC wheel motor. IEEE T Magn, 2010, 46: 2994–2997

    Article  Google Scholar 

  9. Moussouni F, Brisset S, Brochet P. Some results on the design of brushless DC wheel motor using SQP and GA. Int J Appl Electrom, 2007, 26: 233–241

    Google Scholar 

  10. Duan H B, Li J N. Gaussian harmony search algorithm: A novel method for Loney’s solenoid problem. IEEE T Magn, 2014, 50: 83–87

    Article  MathSciNet  Google Scholar 

  11. Duan H B, Sun C H. Pendulum-like oscillation controller for micro aerial vehicle with ducted fan based on LQR and PSO. Sci China Tech Sci, 2013, 56: 423–429

    Article  Google Scholar 

  12. Li P, Duan H B. Path planning of unmanned aerial vehicle based on improved gravitational search algorithm. Sci China Tech Sci, 2012, 55: 2712–2719

    Article  Google Scholar 

  13. Duan H B, Qiao P X. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int J Intell Comput Cybern, 2014, 7: 2–21

    Article  MathSciNet  Google Scholar 

  14. Whiten A. Operant study of sun altitude and pigeon navigation. Nature, 1972, 237: 405–406

    Article  Google Scholar 

  15. Mora C, Davison C, Wild J, et al. Magnetoreception and its trigeminal mediation in the homing pigeon. Nature, 2004, 432: 508–511

    Article  Google Scholar 

  16. Guilford T, Roberts S, Biro D. Positional entropy during pigeon homing II: Navigational interpretation of Bayesian latent state models. J Thero Biol, 2004, 227: 25–38

    Article  MathSciNet  Google Scholar 

  17. Zhang S J, Duan H B. Gaussian pigeon-inspired optimization approach to orbital spacecraft formation reconfiguration. Chinese J Aeronaut, 2015, 28: 200–205

    Article  MathSciNet  Google Scholar 

  18. Li C, Duan H B. Target detection approach for UAVs via improved pigeon-inspired optimization and edge potential function. Aerosp Sci Technol, 2014, 39: 352–360

    Article  Google Scholar 

  19. Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE T Evolut Comput, 2002, 6: 182–197

    Article  Google Scholar 

  20. Duan H B, Li S T, Shi Y H. Predator–prey brain storm optimization for DC brushless motor. IEEE T Magn, 2013, 49: 5336–5340

    Article  Google Scholar 

  21. Tian Y, Liu P Q, Li Z. Multi-objective optimization of shock control bump on a supercritical wing. Sci China Tech Sci, 2014, 57: 192–202

    Article  Google Scholar 

  22. Ye C J, Huang M X. Multi-objective optimal configuration of current limiting strategies. Sci China Tech Sci, 2014, 57: 1738–1749

    Article  Google Scholar 

  23. Yao S B, Guo D L, Sun Z X, et al. Multi-objective optimization of the streamlined head of high-speed trains based on the Kriging model. Sci China Tech Sci, 2012, 55: 3495–3509

    Article  Google Scholar 

  24. Blanco A M, Michalewicz Z. Implicit memory-based technique in solving dynamic scheduling problems through response surface methodology–Part I: Model and method. Int J Intell Comp Cybern, 2014, 7: 114–142

    Article  Google Scholar 

  25. Xie C, Ding L. Various selection approaches on evolutionary multi- objective optimization. In: Proceedings of 3rd International Conference on Biomedical Engineering and Informatics, Yantai, 2010. 3007–3011

    Google Scholar 

  26. Oliveto P S, He J, Yao X. Time complexity of evolutionary algorithms for combinatorial optimization: A decade of results. Int J Auto Comp, 2007, 4: 281–293

    Article  Google Scholar 

  27. Brisset S, Brochet P. Analytical model for the optimal design of a brushless DC wheel motor. COMPEL, 2005, 24: 829–848

    Article  MATH  Google Scholar 

  28. A Benchmark for a Mono and Multi Objective Optimization of the Brushless DC Wheel Motor. L2EP - Ecole Centrale de Lille, France. http://l2ep.univ-lille1.fr/come/benchmark-wheel-motor.htm

  29. Kursawe F. A variant of evolution strategies for vector optimization. In: Parallel Problem Solving from Nature. Berlin/Heidelberg: Springer, 1991. 193–197

    Chapter  Google Scholar 

  30. Cerav-Erbas S, Pimentel A D, Erbas C. Multi-objective optimization and evolutionary algorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE T Evolut Comput, 2006, 10: 358–374

    Article  Google Scholar 

  31. Kavka C, Onesti L, Palermo G, et al. Deliverable D3.2: Implementation and Evaluation of the Exploration Algorithms. FP7-216693-Multicube Project. 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiBin Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, H., Duan, H. Multi-objective pigeon-inspired optimization for brushless direct current motor parameter design. Sci. China Technol. Sci. 58, 1915–1923 (2015). https://doi.org/10.1007/s11431-015-5860-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5860-x

Keywords

Navigation