Skip to main content
Log in

Feature extraction for latent fault detection and failure modes classification of board-level package under vibration loadings

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A feature extraction for latent fault detection and failure modes classification method of board-level package subjected to vibration loadings is presented for prognostics and health management (PHM) of electronics using adaptive spectrum kurtosis and kernel probability distance clustering. First, strain response data of electronic components is filtered by empirical mode decomposition (EMD) method based on maximum spectrum kurtosis (SK), and fault symptom vector is developed by computing and reconstructing the envelope spectrum. Second, nonlinear fault symptom data is mapped and clustered in sparse Hilbert space using Gaussian radial basis kernel probabilistic distance clustering method. Finally, the current state of board level package is estimated by computing the membership probability of its envelope spectrum. The experimental results demonstrated that the method can detect and classify the latent failure mode of board level package effectively before it happened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen X F, He Z J, Li B, et al. An efficient wavelet finite element method in fault prognosis of incipient crack. Sci China Tech Sci, 2006, 49: 89–101

    Article  Google Scholar 

  2. Steinberg D S. Vibration Analysis for Electronic Equipment. 2nd ed. New York: Wiley-Interscience, 1988

    Google Scholar 

  3. Medjaher K, Skima H, Zerhouni N. Condition assessment and fault prognostics of microelectromechanical systems. Microelectron Reliab, 2014, 54: 143–151

    Article  Google Scholar 

  4. Lall P, Lowe R, Goebel K. Extended Kalman filter models and resistance spectroscopy for prognostication and health monitoring of leadfree electronics under vibration. IEEE T Reliab, 2012, 61: 858–871

    Article  Google Scholar 

  5. Gu J, Barker D, Pecht M. Prognostics implementation of electronics under vibration loading. Microelectron Reliab, 2007, 47: 1849–1856

    Article  Google Scholar 

  6. Wu M L. Vibration-induced fatigue life estimation of ball grid array packaging. J Micromech Microeng, 2009, 19: 065005

    Article  Google Scholar 

  7. Che F X, Pang J H L. Vibration reliability test and finite element analysis for flip chip solder joints. Microelectron Reliab, 2009, 49: 754–760

    Article  Google Scholar 

  8. Lall P, Gupta P, Goebel K. Decorrelated feature space and neural nets based framework for failure modes clustering in electronics subjected to mechanical shock. IEEE T Reliab, 2012, 61: 884–899

    Article  Google Scholar 

  9. Tu K N, Tian T. Metallurgical challenges in microelectronics 3D IC packaging technology for future consumer electronic products. Sci China Tech Sci, 2013, 56: 1740–1748

    Article  Google Scholar 

  10. Han C, Oh C M, Hong W S. Prognostics model development of BGA assembly under vibration environment. IEEE T Comp Pack Man, 2012, 2: 1329–1334

    Google Scholar 

  11. Delmonte N, Giuliani F, Cova P. Finite element modeling and characterization of lead-free solder joints fatigue life during power cycling of surface mounting power devices. Microelectron Reliab, 2013, 53: 1611–1616

    Article  Google Scholar 

  12. Alam M A, Azarian M H, Osterman M, et al. Prognostics of failures in embedded planar capacitors using model-based and data-driven approaches. J Intel Mat Syst Str, 2011, 22: 1293–1303

    Article  Google Scholar 

  13. Yao W, Basaran C. Electromigration damage mechanics of lead-free solder joints under pulsed DC: A computational model. Comp Mater Sci, 2013, 71: 76–88

    Article  Google Scholar 

  14. Lall P, Gupta P, Angral A. Anomaly detection and classification for PHM of electronics subjected to shock and vibration. IEEE T Comp Pack Man, 2012, 2: 1902–1918

    Google Scholar 

  15. Kim C U, Bang W H, Xu H, et al. Characterization of solder joint reliability using cyclic mechanical fatigue testing. JOM, 2013, 65: 1362–1373

    Article  Google Scholar 

  16. Otiaba K C, Okereke M I, Bhatti R S. Numerical assessment of the effect of void morphology on thermo-mechanical performance of solder thermal interface material. Appl Therm Eng, 2014, 64: 51–63

    Article  Google Scholar 

  17. Lall P, Lowe R. Comparison of Prognostic health management algorithms for assessment of electronic interconnect reliability under vibration. J Electron Packaging, 2014, 136: 041013

    Article  Google Scholar 

  18. Sheng H, Zheng Z, Enrico Z, et al. Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method. Digit Signal Process, 2014, 27: 159–166

    Article  Google Scholar 

  19. Chen B Q, Zhang Z S, Zi Y Y, et al. A pseudo wavelet system-based vibration signature extracting method for rotating machinery fault detection. Sci China Tech Sci, 2013, 56: 1294–1306

    Google Scholar 

  20. Yang Y C, Satish N. Structural damage identification via a combination of blind feature extraction and sparse representation classification. Mech Syst Signal Pr, 2014, 45: 1–23

    Article  Google Scholar 

  21. Shao R P, Hu W T, Wang Y Y, et al. The fault feature extraction and classification of gear using principal component analysis and kernel principal component analysis based on the wavelet packet transform. Measurement, 2014, 54: 118–132

    Article  Google Scholar 

  22. Chen Y M, Zi Y Y, Cao H R, et al. A data-driven threshold for wavelet sliding window denoising in mechanical fault detection. Sci China Tech Sci, 2014, 57: 589–597

    Article  Google Scholar 

  23. Abdenour S, Hubert R, Guy C, et al. Prognosis of bearing failures using hidden markov models and the adaptive neuro-fuzzy inference system. IEEE T Ind Electron, 2014, 61: 2864–2874

    Article  Google Scholar 

  24. Sachin K, Tommy W S, Michael P, Chow, Michael Pecht. Approach to fault identification for electronic products using mahalanobis distance. IEEE T Instrum Meas, 2010, 59: 2055–2064

    Article  Google Scholar 

  25. Zhang C L, He Y G, Yuan L F, et al. A novel approach for analog circuit fault prognostics based on improved RVM. J Electron Test, 2014, 30: 343–356

    Article  Google Scholar 

  26. Kappaganthu K, Nataraj C. Feature selection for fault detection in rolling element bearings using mutual information. J Vib Acoust, 2011, 133: 061001

    Article  Google Scholar 

  27. Lee J H, Seo J S. Application of spectral kurtosis to the detection of tip vortex cavitation noise in marine propeller. Mech Syst Signal Pr, 2013, 40: 222–236

    Article  Google Scholar 

  28. González de la Rosa J J, Sierra-Fernández J M, Agüera-Pérez A, et al. An application of the spectral kurtosis to characterize power quality events. Int J Elec Power, 2013, 49: 386–398

    Article  Google Scholar 

  29. Wang S B, Jia H K, Li L A, et al. Experimental investigation on cumulative propagation of thin film buckling under cyclic load. Sci China Tech Sci, 2011, 54: 1371–1375

    Article  Google Scholar 

  30. Antoni J. The spectral kurtosis: A useful tool for characterizing non-stationary signals. Mech Syst Signal Pr, 2006, 20: 282–307

    Article  Google Scholar 

  31. Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc London Ser A, 1998, 454: 903–995

    Article  MathSciNet  MATH  Google Scholar 

  32. Peng Z K, Peter W T, Chu F L. An improved Hilbert-Huang transform and its application in vibration signal analysis. J Sound Vib, 2005, 286: 187–205

    Article  Google Scholar 

  33. Ben-Israel A, Iyigun C. Probabilistic D-clustering. J Classif, 2008, 25: 5–26

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Jing, B., Huang, Y. et al. Feature extraction for latent fault detection and failure modes classification of board-level package under vibration loadings. Sci. China Technol. Sci. 58, 1905–1914 (2015). https://doi.org/10.1007/s11431-015-5854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5854-8

Keywords

Navigation