Skip to main content
Log in

Investigation of model development for deterministic correlations associated with impeller-diffuser interactions in centrifugal compressors

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The average-passage equation system (APES) provides a rigorous framework to account for the deterministic unsteady effects by the so-called deterministic correlations (DC), which include both deterministic stress correlations (DCS) and deterministic total enthalpy correlations (DCH). These correlations should be modeled to close the system of equations. In this paper, the distribution of DC in a transonic centrifugal compressor is presented, and its relative importance is revealed. The assumption made by Adamczyk that the pure unsteady fluctuation is significantly smaller than the spatial fluctuation is verified at the impeller-diffuser interface. The decomposition of DCH is also discussed to determine its two different physical mechanisms. Finally, the transport equations in terms of DCS in cylindrical coordinates are derived, and the terms are evaluated to determine the ones that are necessary to model. All these analyses significantly contribute to our model development for DC in centrifugal compressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y S, Wang K, Lin F, et al. Performance analysis and improvement of a high flow coefficient centrifugal compressor. Sci China Tech Sci, 2014, 57: 1647–1657

    Article  Google Scholar 

  2. Zheng X Q, Jin L, Tamaki H. Influence of volute distortion on the performance of turbocharger centrifugal compressor with vane diffuser. Sci China Tech Sci, 2013, 56: 2778–2786

    Article  Google Scholar 

  3. Zheng X Q, Lin Y, Zhuge W L, et al. Stability improvement of turbocharger centrifugal compressor by asymmetric vaneless diffuser treatment. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. San Antonio, Texas, USA, 2013. GT 2013-94705

    Google Scholar 

  4. Li D, Yang C, Zhou M, et al. Numerical and experimental research on different inlet configurations of high speed centrifugal compressor. Sci China Tech Sci, 2012, 55: 174–181

    Article  Google Scholar 

  5. Xu W, Wang T, Gu C G. Performance of a centrifugal compressor with holed casing treatment in the large flowrate condition. Sci China Tech Sci, 2011, 54: 2483–2492

    Article  Google Scholar 

  6. Denton J D. Extension of the finite volume time marching method to three dimensions. VKI Lecture series. 1979

    Google Scholar 

  7. Denton J D. The calculation of 3d viscous flow through multi-stage turbomachines. J Turbomach, 1992, 114: 18–26

    Article  Google Scholar 

  8. Peeters M, Sleiman M. A numerical investigation of the unsteady flow in centrifugal stages. In: ASME Turbo Expo 2000: Power for Land, Sea, and Air. Munich, Germany, 2000. 2000-GT-0426

    Google Scholar 

  9. Liu Y W, Liu B J, Lu L P. Investigation of unsteady impeller-diffuser interaction in a transonic centrifugal compressor stage. In: ASME Turbo Expo 2010: Power for Land, Sea and Air. Glasgow, UK, 2010. GT 2010-22737

    Google Scholar 

  10. Liu B J, Zhang B, Liu Y W. Numerical investigations of impeller-diffuser interactions in a transonic centrifugal compressor stage using nonlinear harmonic method. P I Mech Eng A-J Pow, 2014, 228: 862–877

    Google Scholar 

  11. Erdos J I, Alzner E. Computation of unsteady transonic flows through rotating and stationary cascades. NASA Report CR-2900. 1977

    Google Scholar 

  12. Rai M M. Navier-stokes simulations of rotor-stator interaction using patched and overlaid gids. J Propul Power, 1987, 3: 387–396

    Article  Google Scholar 

  13. Giles M. UNSFLO: A numerical method for unsteady inviscid flow in turbomachinery. MIT Gas Turbine Laboratory Report 195. 1988

    Google Scholar 

  14. He L, Ning W. Efficient approach for analysis of unsteady viscous flows in turbomachines. AIAA J, 1998, 36: 2005–2012

    Article  Google Scholar 

  15. Chen T, Vasanthakumar P, He L. Analysis of unsteady blade row interaction using nonlinear harmonic approach. J Propul Power, 2000, 17: 651–658

    Article  MATH  Google Scholar 

  16. Adamczyk J J. Model equation for simulation flows in multistage turbomachinery. NASA-TM-86869. 1984

    Google Scholar 

  17. Adamczyk J J, Mulac R A, Celestina M L. A model for closing the inviscid form of the average-passage equation system. J Turbomach, 1986, 108: 180–186

    Article  Google Scholar 

  18. Rhie C M, Gleixner A J, Spear D A, et al. Development and application of a multistage navier-stokes solver, part1: Multistage modeling using bodyforce and deterministic stress. J Turbomach, 1998, 120: 205–214

    Article  Google Scholar 

  19. Hall E J. Aerodynamic modeling of multistage compressor flow field-part 2: Modeling deterministic stresses. P I Mech Eng G-J Aer, 1998, 212: 91–107

    Article  Google Scholar 

  20. Li Y G, Tourlidakis A. Influence of deterministic stresses on flow prediction of a low-speed axial flow compressor rear stage. Proc IMechE Part A: J Power Energy, 2001, 215: 571–583

    Article  Google Scholar 

  21. Ji L C. Exploration on rotor/stator interaction unsteady flow in axial turbomachinery. Dissertation for the Doctoral Degree. Beijing: Beijing University of Aeronautics and Astronautics, 1998

    Google Scholar 

  22. Zhao X L, Xiao X. Numerical investigation of blade row interaction between centrifugal impeller and diffuser vanes by using deterministic stress model. J Eng Thermophys, 2001, 22: 423–426

    Google Scholar 

  23. Gao L M, Xi G, Wang S J. An average-passage empirical closure model for centrifugal compressors. In: ASME Turbo Expo 2004: Power for Land, Sea and Air. Vienna, Austria, 2004. GT 2004-53702

    Google Scholar 

  24. Liu Y W. Exploration on 3d steady viscous numerical simulation technique for multi-stage compressor. Dissertation for the Doctor Degree. Beijing: Beijing University of Aeronautics and Astronautics, 2009

    Google Scholar 

  25. Bardoux F, Leboeuf F. Impact of deterministic correlations on the steady flow field. P I Mech Eng A-J Pow, 2001, 215: 687–698

    Google Scholar 

  26. Sondak D L, Dorney D J, Davis R L. Modeling turbomachinery unsteadiness with lumped deterministic stresses. In: Joint Propulsion Conference and Exhibit. Lake Buena Vista, FL, 1996. 96–2570

    Google Scholar 

  27. He L. Modeling issues for computation of unsteady turbomachinery flows. Unsteady Flows in Turbomachines, von Karman Inst. Lecture Series, 1996

    Google Scholar 

  28. Meneveau C, Katz J. A deterministic stress model for rotor-stator interactions in simulations of average-passage flow. J Fluids Eng, 2002, 124: 550–555

    Article  Google Scholar 

  29. van de Wall A G. A transport model for the deterministic stresses associated with turbomachinery blade row interactions. J Turbomach, 2000, 122: 593–603

    Article  Google Scholar 

  30. Charbonnier D, Leboeuf F. Steady flow simulation of rotor-stator interactions with a new unsteady flow model. In: Joint Propulsion Conference and Exhibit. Fort Lauderdale, Florida, 2004. 2004–3754

    Google Scholar 

  31. Jameson A. Time dependent calculation using multigrid with applications to unsteady flows past airfoils and wings. AIAA Paper 91-1596, 1991

    Google Scholar 

  32. Guidotti E, Turner M G. Analysis of the unsteady flow in an aspirated counter-rotating compressor using the nonlinear harmonic method. In: ASME Turbo Expo 2009: Power for Land, Sea, and Air. Orlando, Florida, USA, 2009. GT 2009-60285

    Google Scholar 

  33. Bradshaw P. Turbulence modeling with application to turbomachinery. Prog Aerosp Sci, 1996, 32: 575–624

    Article  Google Scholar 

  34. Dunham J. CFD validation for propulsion system components. AGARD-AR-355. 1998

    Google Scholar 

  35. Liu Y W, Yu X J, Liu B J. Turbulence Models Assessment for Large-Scale Tip Vortices in an Axial Compressor Rotor. J Propul Power, 2008, 24: 15–25

    Article  Google Scholar 

  36. Liu Y W, Lu L P, Fang L et al. Modification of Spalart-Allmaras model with consideration of turbulence energy backscatter using ve locity helicity. Phys Lett A, 2011, 375: 2377–2381

    Article  Google Scholar 

  37. Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0439, 1992

    Google Scholar 

  38. Shum Y K P, Tan C S, Cumpsty N A. Impeller-diffuser interaction in a centrifugal compressor. J Turbomach, 2000, 122: 777–786

    Article  Google Scholar 

  39. Kirtley K R, Beach T A. Deterministic blade row interactions in a centrifugal compressor stage. J Turbomach, 1992, 114: 304–311

    Article  Google Scholar 

  40. Abdelwahab A. Numerical investigation of the unsteady flow fields in centrifugal compressor diffusers. In: ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, UK, 2010. GT 2010-22489

    Google Scholar 

  41. Liu Y W, Liu B J, Lu L P. Study of modeling unsteady blade row interaction in a transonic compressor stage part 1: Code development and deterministic correlation analysis. Acta Mech Sin, 2012, 28: 281–290

    Article  MATH  Google Scholar 

  42. Liu Y W, Liu B J, Lu L P. Study of modeling unsteady blade row interaction in a transonic compressor stage part 2: Influence of deterministic correlations on time-averaged flow prediction. Acta Mech Sin, 2012, 28: 291–299

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YangWei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Zhang, B. & Liu, Y. Investigation of model development for deterministic correlations associated with impeller-diffuser interactions in centrifugal compressors. Sci. China Technol. Sci. 58, 499–509 (2015). https://doi.org/10.1007/s11431-015-5766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5766-7

Keywords

Navigation