Skip to main content
Log in

Bifurcation analysis for Hindmarsh-Rose neuronal model with time-delayed feedback control and application to chaos control

  • Article
  • Special Topic: Neurodynamics
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper is concerned with bifurcations and chaos control of the Hindmarsh-Rose (HR) neuronal model with the time-delayed feedback control. By stability and bifurcation analysis, we find that the excitable neuron can emit spikes via the subcritical Hopf bifurcation, and exhibits periodic or chaotic spiking/bursting behaviors with the increase of external current. For the purpose of control of chaos, we adopt the time-delayed feedback control, and convert chaos control to the Hopf bifurcation of the delayed feedback system. Then the analytical conditions under which the Hopf bifurcation occurs are given with an explicit formula. Based on this, we show the Hopf bifurcation curves in the two-parameter plane. Finally, some numerical simulations are carried out to support the theoretical results. It is shown that by appropriate choice of feedback gain and time delay, the chaotic orbit can be controlled to be stable. The adopted method in this paper is general and can be applied to other neuronal models. It may help us better understand the bifurcation mechanisms of neural behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Izhikevich E M. Neural excitability, spiking and bursting. Inter J Bifurcation Chaos, 2000, 10: 1171–1266

    Article  MATH  MathSciNet  Google Scholar 

  2. Duan L X, Zhai D H, Lu Q S. Bifurcation and bursting in Morris-Lecar model for class I and class II excitability. Discrete and Continuous dynamical systems (supplement), 2011: 391–399

    Google Scholar 

  3. Wang H X, Wang Q Y, Lu Q S. Bursting oscillations, bifurcation and synchronization in neuronal systems. Chaos, Solitons & Fractals, 2011, 44: 667–675

    Article  MATH  Google Scholar 

  4. Wang Q Y, Duan Z S, Feng Z S, et al. Synchronization transition in gap-junction-coupled leech neurons. Phys A, 2008, 387: 4404–4410

    Article  Google Scholar 

  5. Duan L X, Lu Q S, Cheng D Z. Bursting of Morris-Lecar neuronal model with current-feedback control. Sci China Tech Sci, 2009, 52: 771–781

    Article  MATH  Google Scholar 

  6. Duan L X, Fan D G, Lu Q S. Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling. Cogn Neurodyn, 2013, 7: 341–349

    Article  Google Scholar 

  7. Wang H X, Wang Q Y, Lu Q S, et al. Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction. Cogn Neurodyn, 2013, 7: 121–131

    Article  Google Scholar 

  8. Hu G, Xiao J H, Zheng Z G. Chaos Control (in Chinese). Shanghai: Shanghai Technol Education Publishing House, 2000

    Google Scholar 

  9. Rabinovich M I, Abarbanel H D I. The role of chaos in neural systems. Neuroscience, 1998, 87: 5–14

    Article  Google Scholar 

  10. Yu H J, Peng J H. Chaotic synchronization and control in nonlinear-coupled Hindmarsh-Rose neural systems. Chaos, Solitons & Fractals, 2006, 29: 342–348

    Article  MATH  MathSciNet  Google Scholar 

  11. Korn H, Faure P. Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biologies, 2003, 326: 787–840

    Article  Google Scholar 

  12. Pikovsky A, Rosenblum M, Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge UnivPress, 2001

    Book  Google Scholar 

  13. Hubler A. Adaptive control of chaotic systems. Helv. Phys. Acta, 1989, 62: 343–346

    Google Scholar 

  14. Ott E, Grebogi C, Yorke J A. Controlling chaos. Phys Rev Lett, 1990, 64: 1196–1199

    Article  MATH  MathSciNet  Google Scholar 

  15. Pyragas K. Continuous control of chaos by self-controlling feedback. Phys Lett A, 1992, 170: 421–428

    Article  Google Scholar 

  16. Yang T, Yang C. Control of Rössler system to periodic motions using impulsive control methods. Phys Lett A, 1997, 232: 356–361

    Article  MATH  MathSciNet  Google Scholar 

  17. Rafikov M, Balthazar J M. On an optimal control design for Rössler systems. Phys Lett A, 2004, 333: 241–245

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen C, Yan J, Liao T. Sliding mode control for synchronization of Rössler systems with time delays and its application to secure communication. Phys Scr, 2007, 76: 436–441

    Article  MATH  Google Scholar 

  19. Agiza H N, Yassen M T. Synchronization of Rössler and Chen chaotic dynamical systems using active control. Phys Lett A, 2001, 278: 191–197

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen Y Y, Peng J H, Shen Q H, et al. Defining the controlling conditions of low-dimensional chaotic systems controlled by time-delayed feedback (in Chinese). Acta Physica Sinica, 2001, 50:1871–1875

    Google Scholar 

  21. Liu B Z, Peng J H. Nonlinear Dynamics. Beijing: Higher Education Press, 2004

    Google Scholar 

  22. Song Y L, Wei J J. Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos. Chaos, Solitons & Fractals, 2010, 4: 75–91

    MathSciNet  Google Scholar 

  23. Ding Y T, Jiang W H, Wang H B. Delayed feedback control and bifurcation analysis of Rössler chaotic system. Nonlinear Dyn, 2010, 61: 707–715

    Article  MATH  MathSciNet  Google Scholar 

  24. Xu M H, Wei Y, Wei J J. Bifurcation analysis of Rössler system with multiple delayed feedback. Electronic Journal of Qualitative Theory of Differential Equations. 2010, 63: 1–22

    MathSciNet  Google Scholar 

  25. Yu H J, Tong W J. Chaotic control of hindmarsh-rose neuron by delayed self-feedback. Acta Phys Sin, 2009, 58: 2977–2982

    MATH  Google Scholar 

  26. Schöll B E, Hiller G, Hövel P, et al. Time-delayed feedback in neurosystems. Phil Trans R Soc A, 2009, 367: 1079–1096

    Article  MATH  Google Scholar 

  27. Hale J K. Theory of Functional Differential Equation. New York: Springer-Verlag, 1997

    Google Scholar 

  28. Kuznetsov Y A. Elements of Applied Bifurcation Theory. New York: Springer-Verlag, 1995

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiXia Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, Q. & Zheng, Y. Bifurcation analysis for Hindmarsh-Rose neuronal model with time-delayed feedback control and application to chaos control. Sci. China Technol. Sci. 57, 872–878 (2014). https://doi.org/10.1007/s11431-014-5535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5535-z

Keywords

Navigation