Skip to main content
Log in

The fabrication and optimization of OTFT formaldehyde sensors based on Poly(3-hexythiophene)/ZnO composite films

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Formaldehyde (HCHO), a colorless and pungent-smelling gas, is confirmed be a huge threat to human health. The detection of formaldehyde is necessary and important. The Poly(3-hexythiophene) (P3HT)/ZnO organic-inorganic composite thin film was fabricated and used as the sensitive layer of organic thin film transistors (OTFT) by spray-deposited method to detect HCHO at room temperature. The process parameters such as P3HT/ZnO weight ratios and airbrushed masses were optimized. The results showed that P3HT/ZnO OTFT exhibited good sensing response to HCHO. Airbrushed mass of 1ml was the optimal mass, and the 1:1 and 1:5 weight ratios of P3HT/ZnO exhibited better sensing properties compared with others. OTFT gas sensors based on P3HT/ZnO composite film provides a novel promising approach to the detection of HCHO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryan M A, Zhou H, Buehler M G, et al. Monitoring space shuttle air quality using the Jet Propulsion labotatory electronic nose. IEEE Sensor J, 2004, 4: 337–347

    Article  Google Scholar 

  2. Hu W L, Chen S Y, Liu L T, et al. Formaldehyde sensors based in nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sens Actuators B, 2011, 157: 554–559

    Article  Google Scholar 

  3. Filho O F, Suleiman A A, Guilbault G G. Piezoelectric crystal sensor for the determination of formaldehyde in air. Talanta, 1991, 38: 541–545

    Article  Google Scholar 

  4. Zhou K W, Ji X L, Zhang N, et al. On-line monitoring of formaldehyde in air by cataluminescence-based gas sensor. Sens Actuators B, 2006, 119: 392–397

    Article  Google Scholar 

  5. Horstjann M, Bakhirkin Y A, Kosterev A A, et al. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy. Appl Phys B, 2004, 79: 799–803

    Article  Google Scholar 

  6. Peng L, Zhao Q D, Wang D J, et al. Ultraviolet-assisted gas sensing: A potential formaldehyde detection approach at room temperature based on zinc oxide nanorods. Sens Actuators B, 2009, 136: 80–85

    Article  Google Scholar 

  7. Han N, Tian Y J, Wu X F, et al. Improving humidity selsectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens Actuators B, 2009, 138: 228–235

    Article  Google Scholar 

  8. Wang R X, Zhang D J, Zhang Y M, et al. Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde. J Phys Chen B, 2006, 110: 18267–18271

    Article  Google Scholar 

  9. Lu Y J, Meyyappan M, Li J. A carbon-nanotube-based sensor array for formaldehyde detection. Nanotechnol, 2011, 11: 055502

    Article  Google Scholar 

  10. Wang L, Fine D, Sharma D, et al. Nanoscale organic and polymeric field-effect transistors as chemical sensors. Anal Bioanal Chem, 2005, 384: 310–321

    Article  Google Scholar 

  11. Street R A, Thin-film transistors. Adv Mater, 2009, 21: 2007–2022

    Article  Google Scholar 

  12. Torsi L, Dodabalapur A, Sabbatini L, et al. Multi-parameter gas sensors based on organic thin-film-transistors. Sens Actuators B, 2007, 67: 312–316

    Article  Google Scholar 

  13. Yan J F, Wu Z M, Tai H L, et al. The investigation of the formaldehyde gas sensor based on organic thin-film transistors. In: The IEEE International Conference on Apperceiving Computing and Intelligence Analysis. Chengdu: IEEE, 2010. 213–216

    Google Scholar 

  14. Liu B, Xie G Z, Du X S, et al. Poly (3-hexylthiophene) based organic field-effect transistor as NO2 gas sensor. Proc SPIE, 2009, 7508: 750813-1

    Google Scholar 

  15. Fukuda H, Yamagishi Y, Ise M, et al. Gas sensing of properties of Poly-3-hexylthiophene thin film transistors. Sens Actuators B, 2005, 108: 414–417

    Article  Google Scholar 

  16. Jeong J W, Lee Y D, Kim Y M, et al. The response characteristics of a gas sensor based on Poly-3-hexylthiophene thin-film transistors. Sens Actuators B, 2010, 146: 40–45

    Article  Google Scholar 

  17. Navan R R, Panigraphy B, Baghini M S, et al. Mobility enhancement of solution-processed Poly (3-hexylthiophene) based organic transistor using zinc oxide nanosturctures. Compos Part B-Eng, 2012, 43: 1645–1648

    Article  Google Scholar 

  18. Li X, Jiang Y D, Xie G Z, et al. Copper phthalocyanine thin film transistors for hydrogen sulfide detection. Sens Actuators B, 2013, 176: 1191–1196

    Article  Google Scholar 

  19. Green R, Morfa A, Ferhuson A J, et al. Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition. Appl Phys Lett, 2008, 92: 033301

    Article  Google Scholar 

  20. Chan C K, Richter L J, Dinardo B, et al. High performance airbrushed organic thin film transistors. Appl Phys Lett, 2010, 96: 133304

    Article  Google Scholar 

  21. Azarova N A, Owen J W, Mclellan C A, et al. Fabrication of organic thin-film transistors by spray-deposition for low-coat, large-area electronics. Org Electron, 2010, 11: 1960–1965

    Article  Google Scholar 

  22. Someya T, Dodabalapur A, Huang J, et al. Chemical and physical sensing by organic field — effect transistors and related devices. Adv Mater, 2010, 22: 3799

    Article  Google Scholar 

  23. Guillaud G, Simon J, Germain J P. Metallophthalocyanines Gas sensors, resistors and field effect transistors. Chem Soc Rev, 1998, 178–180: 1433–1484

    Google Scholar 

  24. Bohrer F I, Sharoni A. Gas sensing mechanism in chemiresistive cobalt and metal-free phthalocyanine thin films. J Am Chem Soc, 2007, 129: 5640–5646

    Article  Google Scholar 

  25. Saxena V, Aswal K D, Kaur M, et al. Enhanced NO2 selectivity of hybrid poly(3-hexylthiophene): ZnO-nanowire thin films. Appl Phys Lett, 2007, 90: 043516

    Article  Google Scholar 

  26. Hsieh G W, Li F M, Beecher P, et al. High performance nanocomposite thin film transistors with bilayer carbon nanotube-polythiphene active channel by ink-jet printing. J Appl Phys, 2009, 106: 123706

    Article  Google Scholar 

  27. Park Y D, Lim J A, Jiang Y, et al. Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors. Org Elec, 2008, 9: 317–322

    Article  Google Scholar 

  28. Trogler W C. Chemical sensing with semiconducting metal phthalocyanines. Struct Bond, 2012, 142: 91–118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuiLing Tai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Jiang, Y., Tai, H. et al. The fabrication and optimization of OTFT formaldehyde sensors based on Poly(3-hexythiophene)/ZnO composite films. Sci. China Technol. Sci. 56, 1877–1882 (2013). https://doi.org/10.1007/s11431-013-5268-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5268-4

Keywords

Navigation