Skip to main content
Log in

Rapid and highly sensitive detection of formaldehyde at room temperature using rGO/WO3 nanocomposite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Formaldehyde (HCHO) is an indoor toxic volatile compound (VOC) gas, which can harm respiratory tract of human beings when a person is exposed to low concentration of HCHO for a long time. In this study, an HCHO sensor with high response and low detection limit based on rGO/WO3 (rGW) nanocomposite was successfully synthesized by hydrothermal method. Experimental results depict that the average response value of rGW is about 2000 towards 500 ppm HCHO at room temperature, the response/recovery time is 2.8 s/1.7 s for HCHO at 500 ppb and the low detection limit is 500 ppb. Moreover, rGW exhibits excellent selectivity and good stability. Compared to WO3, the combination of rGO with WO3 can increase the oxygen vacancy on WO3 surface and afford more active sites for capturing HCHO. Furthermore, the formation of electron depletion layer and potential energy barrier between rGO and WO3 increase intrinsic impedance of rGW nanocomposite to further enhance the property of HCHO sensor based on rGW. This study indicates that the combination of rGO with WO3 can efficiently enhance the property of WO3-based HCHO sensor at room temperature, which is conducive to the application of metal oxide semiconductor in field of gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. D. Sun, W. Wang, N. Zhang, C.X. Liu, X. Li, J.R. Zhou, S.P. Ruan, G-C3N4/In2O3 composite for effective formaldehyde detection. Sens. Actuators B Chem. 358, 131414 (2022)

    Google Scholar 

  2. Md.M. Darder, M. Bedoya, L.A. Serrano, M.Á. Alba, G. Orellana, Fiberoptic colorimetric sensor for in situ measurements of airborne formaldehyde in workplace environments. Sens. Actuators B Chem. 353, 131099 (2022)

    Google Scholar 

  3. J.M. Tian, X. Chen, T.Q. Wang, W.Y. Pei, F. Li, D. Li, Y. Yang, X.T. Dong, Modification of indium oxide nanofibers by polyoxometalate electron acceptor doping for enhancement of gas sensing at room temperature. Sens. Actuators B Chem. 344, 130227 (2021)

    Google Scholar 

  4. N. Zhang, L.M. Yan, Y. Lu, Y.Z. Fan, S.J. Guo, S. Adimi, D.L. Liu, S.P. Ruan, Metal-organic frameworks-derived hierarchical ZnO structures as efficient sensing materials for formaldehyde detection. Chin. Chem. Lett. 31, 2071–2076 (2020)

    Google Scholar 

  5. H. Li, S.S. Chu, Q. Ma, J.P. Wang, Q.D. Che, G. Wang, P. Yang, Hierarchical WO3/ZnWO4 1D fibrous heterostructures with tunable in-situ growth of WO3 nanoparticles on surface for efficient low concentration HCHO detection. Sens. Actuators B Chem. 286, 564–574 (2019)

    Google Scholar 

  6. D. Meng, T.T. Qiao, G.S. Wang, Y.B. Shen, X.G. San, R.X. Li, F.L. Meng, Rational design of CuO/In2O3 heterostructures with flower-like structures for low temperature detection of formaldehyde. J. Alloys Compd. 896, 162959 (2022)

    Google Scholar 

  7. Y.C. Li, Y.L. Xu, X. Li, The sensing mechanism of HCHO gas sensor based on transition metal doped graphene: insights from DFT study. Sens. Actuator A Phys. 338, 113460 (2022)

    Google Scholar 

  8. Z.J. Kang, D.Z. Zhang, T.T. Li, X.H. Liu, X.S. Song, Polydopamine-modified SnO2 nanofiber composite coated QCM gas sensor for high-performance formaldehyde sensing. Sens. Actuators B Chem. 345, 130299 (2021)

    Google Scholar 

  9. Y.-H. Park, K.-J. Choi, J.-Y. Bae, S.-K. Yoon, H.-I. Jang, C.-S. Lee, Development of a detection sensor for mixed trimethylamine and ammonia gas. J Ind Eng Chem. 19, 1703–1707 (2013)

    Google Scholar 

  10. M. Agarwal, M.D. Balachandran, S. Shrestha, K. Varahramyan, SnO2 nanoparticle based passive capacitive sensor for ethylene detection. J. Nanomater. 145406, 1–5 (2012)

    Google Scholar 

  11. P. Puligundla, J. Jung, S. Ko, Carbon dioxide sensors for intelligent food packaging applications. Food Control 25, 328–333 (2012)

    Google Scholar 

  12. Y. Zhou, Y.J. Wang, Y.H. Wang, X. Li, Y.C. Guo, The impact of carrier gas on room- temperature trace nitrogen dioxide sensing of ZnO nanowire-integrated film under UV illumination. Ceram. Int. 46, 16056–16061 (2020)

    Google Scholar 

  13. J.J. Liu, L.Y. Zhang, J.J. Fan, B.C. Zhu, J.G. Yu, Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sens. Actuators B Chem. 331, 129425 (2021)

    Google Scholar 

  14. C.M. Lou, G.L. Lei, X.H. Liu, J.Y. Xie, Z.S. Li, W. Zheng, N. Goel, M. Kumar, J. Zhang, Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors. Coord. Chem. Rev. 452, 214280 (2022)

    Google Scholar 

  15. Y.X. Li, N. Chen, D.Y. Deng, X.X. Xing, X.C. Xiao, Y.D. Wang, Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens. Actuators B Chem. 238, 264–273 (2017)

    Google Scholar 

  16. I.C. Lin, C.-C. Chang, C.-K. Lin, S.-J. Shih, C.-J. Chang, C.-Y. Tsay, J.-B. Shi, T.-L. Horng, J.-H. Chen, J.J. Wu, C.-Y. Hung, C.-Y. Chen, Low operating temperature CO sensor prepared using SnO2 nanoparticles. J. Electroceramics 41, 28–36 (2018)

    Google Scholar 

  17. C.-J. Chang, S.-T. Hung, C.-K. Lin, C.-Y. Chen, E.-H. Kuo, Selective growth of ZnO nanorods for gas sensors using ink-jet printing and hydrothermal processes. Thin Solid Films 519, 1693–1698 (2010)

    ADS  Google Scholar 

  18. S.-T. Hung, C.-J. Chang, C.-H. Hsu, B.H. Chu, C.F. Lo, C.-C. Hsu, S.J. Pearton, M.R. Holzworth, P.G. Whiting, N.G. Rudawski, K.S. Jones, A. Dabiran, P. Chow, F. Ren, SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications. Int. J. Hydrog. Energy. 37, 13783–13788 (2012)

    Google Scholar 

  19. K.-S. Jian, C.-J. Chang, J.J. Wu, Y.-C. Chang, C.-Y. Tsay, J.-H. Chen, T.-L. Horng, G.-J. Lee, L. Karuppasamy, S. Anandan, C.-Y. Chen, High response CO sensor based on a polyaniline/SnO2 nanocomposite. Polymers 11, 1–16 (2019)

    Google Scholar 

  20. C.-J. Chang, C.-Y. Lin, J.-K. Chen, M.-H. Hsu, Ce-doped ZnO nanorods based low operation temperature NO2 gas sensors. Ceram. Int. 40, 10867–10875 (2014)

    Google Scholar 

  21. K. Ramesh, B. Gnanavel, Fabrication and characterization of RGO/WO3 nanocomposites based working electrode for dye-sensitized solar cells (DSSCs). Mater. Today Proc. 47, 1967–1973 (2021)

    Google Scholar 

  22. L.B. Deng, X.H. Ding, D.W. Zeng, S.Q. Tian, H.Y. Li, C.S. Xie, Visible-light activate mesoporous WO3 sensors with enhanced formaldehyde-sensing property at room temperature. Sens. Actuators B Chem. 163, 260–266 (2012)

    Google Scholar 

  23. N.M. Kodarkar, M.P. Deosarkar, B.A. Bhanvase, Ultrasound assisted one step in-situ preparation and characterization of rGO-WO3 nanocomposite for degradation of organic dyes. Chem Eng. Process. 163, 108367 (2021)

    Google Scholar 

  24. H.M. Yu, J.Z. Li, Z.Y. Li, Y.W. Tian, Z.D. Yang, Enhanced formaldehyde sensing performance based on Ag@WO3 2D nanocomposite. Powder Technol. 343, 1–10 (2019)

    ADS  Google Scholar 

  25. X.X. Hu, P.Q. Xu, H.Y. Gong, G.T. Yin, Synthesis and characterization of WO3/graphene nanocomposites for enhanced photocatalytic activities by one-step in-situ hydrothermal reaction. Materials 11, 1–16 (2018)

    Google Scholar 

  26. M.H. Kim, J.S. Jang, W.T. Koo, S.J. Choi, S.J. Kim, D.H. Kim, I.D. Kim, Bimodally porous WO3 microbelts functionalized with Pt catalysts for selective H2S sensor. ACS Appl. Mater. Interfaces. 10, 20643–20651 (2018)

    Google Scholar 

  27. V.K. Tomer, K. Singh, H. Kaur, M. Shorie, P. Sabherwal, Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sens. Actuators B Chem. 253, 703–713 (2017)

    Google Scholar 

  28. T.P. Shende, B.A. Bhanvase, A.P. Rathod, D.V. Pinjari, S.H. Sonawane, Sonochemical synthesis of Graphene-Ce-TiO2 and graphene-Fe-TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye. Ultrason. Sonochem. 41, 582–589 (2018)

    Google Scholar 

  29. J. Wang, H.Y. Deng, X. Li, C. Yang, Y. Xia, Visible-light photocatalysis enhanced room-temperature formaldehyde gas sensing by MoS2/rGO hybrids. Sens. Actuators B Chem. 304, 127317 (2020)

    Google Scholar 

  30. Z.B. Ye, H.L. Tai, T. Xie, Z. Yuan, C.H. Liu, Y.D. Jiang, Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sens. Actuators B Chem. 223, 149–156 (2016)

    Google Scholar 

  31. Z. Bo, M. Yuan, S. Mao, X. Chen, J.H. Yan, K.F. Cen, Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuators B Chem. 256, 1011–1020 (2018)

    Google Scholar 

  32. C.M. Hung, D.Q. Dat, N. Van Duy, V. Van Quang, N. Van Toan, N. Van Hieu, N.D. Hoa, Facile synthesis of ultrafine rGO/WO3 nanowire nanocomposites for highly sensitive toxic NH3 gas sensors. Mater. Res. Bull. 125, 110810 (2020)

    Google Scholar 

  33. R. Ponnusamy, R. Venkatesan, R. Samal, M. Kandasamy, V. Gandhiraj, B. Chakraborty, C.S. Rout, Bifunctional WO3 microrods decorated RGO composite as catechol sensor and optical limiter. Appl. Surf. Sci. 536, 147669 (2021)

    Google Scholar 

  34. C. Hou, G.A. Tai, B. Liu, Z. Wu, Y. Yin, Borophene-graphene heterostructure: preparation and ultrasensitive humidity sensing. Nano Res. 14, 2337–2344 (2021)

    ADS  Google Scholar 

  35. V. Luxmi, A. Kumar, Enhanced photocatalytic performance of m-WO3 and m-Fe-doped WO3 cuboids synthesized via sol-gel approach using egg albumen as a solvent. Mater. Sci. Semicond. Process. 104, 104690 (2019)

    Google Scholar 

  36. K.T. Alali, J.Y. Liu, J. Yu, D. Moharram, R.R. Chen, H.S. Zhang, Q. Liu, M.L. Zhang, J. Wang, HFIP-functionalized electrospun WO3 hollow nanofibers/rGO as an efficient double layer sensing material for dimethyl methylphosphonate gas under UV-Light irradiation. J. Alloys Compd. 832, 154999 (2020)

    Google Scholar 

  37. W.Y. Zhu, F.Q. Sun, R. Goei, Y. Zhou, Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole. Appl. Catal. B: Environ. 207, 93–102 (2017)

    Google Scholar 

  38. C.J. Dong, R.J. Zhao, L.J. Yao, Y. Ran, X. Zhang, Y.D. Wang, A review on WO3 based gas sensors: morphology control and enhanced sensing properties. J. Alloys Compd. 820, 153194 (2020)

    Google Scholar 

  39. S.L. Bai, Y. Zuo, K.W. Zhang, Y.Y. Zhao, R.X. Luo, D.Q. Li, A.F. Chen, WO3-ZnFe2O4 heterojunction and rGO decoration synergistically improve the sensing performance of triethylamine. Sens. Actuators B Chem. 347, 130619 (2021)

    Google Scholar 

  40. Y.J. Zhang, Y.D. Jiang, Z.H. Duan, Q. Huang, Y.W. Wu, B.H. Liu, Q.N. Zhao, S. Wang, Z. Yuan, H.L. Tai, Highly sensitive and selective NO2 sensor of alkalized V2CTx MXene driven by interlayer swelling. Sens. Actuators B Chem. 344, 130150 (2021)

    Google Scholar 

  41. X. Wang, T.K. Wang, G.K. Si, Y. Li, S.W. Zhang, X.L. Deng, X.J. Xu, Oxygen vacancy defects engineering on Ce-doped α-Fe2O3 gas sensor for reducing gases. Sens. Actuators B Chem. 302, 127165 (2020)

    Google Scholar 

  42. S. Zhang, L.J. Zhao, B.Y. Huang, X.G. Li, Enhanced sensing performance of Au-decorated TiO2 nanospheres with hollow structure for formaldehyde detection at room temperature. Sens. Actuators B Chem. 358, 131465 (2022)

    Google Scholar 

  43. X.G. Zeng, L. Liu, Y.F. Lv, B. Zhao, X.N. Ju, S.Y. Xu, J.X. Zhang, C.X. Tian, D. Sun, X.N. Tang, Ultra-sensitive and fast response formaldehyde sensor based on La2O3-In2O3 beaded nanotubes at low temperature. Chem. Phys. Lett. 746, 137289 (2020)

    Google Scholar 

  44. G.J. Li, Y. Fan, Q.M. Hu, D. Zhang, Z.H. Ma, Z.X. Cheng, X.H. Wang, J.Q. Xu, Morphology and size effect of Pd nanocrystals on formaldehyde and hydrogen sensing performance of SnO2 based gas sensor. J. Alloys Compd. 906, 163765 (2022)

    Google Scholar 

  45. R.A.B. John, J. Shruthi, M.V. Ramana Reddy, A. Ruban Kumar, Manganese doped nickel oxide as room temperature gas sensor for formaldehyde detection. Ceram. Int. 48, 17654–17667 (2022)

    Google Scholar 

  46. G.K. Liu, L.J. Zhu, Y.M. Yu, M. Qiu, H.J. Gao, D.Y. Chen, WO3 nanoplates for sensitive and selective detdctions of both acetone and NH3 gas at gases at different operating temperatures. J. Alloys Compd. 858, 157638 (2021)

    Google Scholar 

  47. J.H. Sun, L.X. Sun, N. Han, J.L. Pan, W.Q. Liu, S.L. Bai, Y.J. Feng, R.X. Luo, D.Q. Li, A.F. Chen, Ordered mesoporous WO3/ZnO nanocomposites with isotype heterojunctions for sensitive detection of NO2. Sens. Actuators B Chem. 285, 68–75 (2019)

    Google Scholar 

  48. J.Y. Zhou, J.L. Bai, H. Zhao, Z.Y. Yang, X.Y. Gu, B.Y. Huang, C.H. Zhao, L.M. Cairang, G.Z. Sun, Z.X. Zhang, X.J. Pan, E.Q. Xie, Gas sensing enhancing mechanism via doping-induced oxygen vacancies for gas sensors based on indium tin oxide nanotubes. Sens. Actuators B Chem. 265, 273–284 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62064011).

Funding

National Natural Science Foundation of China, 62064011, hongyan zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Zhang, H., Zhang, L. et al. Rapid and highly sensitive detection of formaldehyde at room temperature using rGO/WO3 nanocomposite. Appl. Phys. A 129, 89 (2023). https://doi.org/10.1007/s00339-022-06375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06375-2

Keywords

Navigation