Skip to main content
Log in

Surface plasmonic effect and scattering effect of Au nanorods on the performance of polymer bulk heterojunction solar cells

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The surface plasmonic effect and scattering effect of gold nanorods (AuNRs) on the performance of bulk heterojunction photovoltaic devices based on the blend of polythiophene and fullerene are investigated. AuNRs enhance the excitation since the plasmonic effect increases the electric field, mainly in the area near the interface between the active layer and AuNRs. The results show that the incident photo-to-electron conversion efficiency (IPCE) obviously increases for the device with a layer of gold nanorods, resulting from the plasmonic effect of AuNRs in the range of 500–670 nm and the scattering effect in the range of 370–410 nm. The power conversion efficiency (PCE) is increased by 7.6% due to the near field effect of the localized surface plasmons (LSP) of AuNRs and the scattering effect. The short circuit current density is also increased by 9.1% owing to the introduction of AuNRs. However, AuNRs can cause a little deterioration in open circuit voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krebs F C, Jørgensen M, Norrman K, et al. A complete process for production of flexible large area polymer solar cells entirely using screen printing-first public demonstration. Sol Energy Mater Sol Cells, 2009, 93: 422–441

    Article  Google Scholar 

  2. Liu Y, Shen H, Deng Y J. A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally. Sci China Tech Sci, 2006, 49(6): 663–673

    Article  Google Scholar 

  3. You J B, Dou L T, Yoshimura K, et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Comm, 2013, 4: 1446–1455.

    Article  Google Scholar 

  4. Pillai S, Green M A. Plasmonics for photovoltaic applications. Sol Energ Mat Sol C, 2010, 94: 1481–1486

    Article  Google Scholar 

  5. Dionne J A, Sweatlock L A, Atwater H A. Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B, 2005, 72: 075405–075415.

    Article  Google Scholar 

  6. Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. Appl Phys Lett, 2008, 93: 191113–191115

    Article  Google Scholar 

  7. Stuart H R, Hall D G. Absorption enhancement in silicon-on-insulator waveguides using metal island films. Appl Phys Lett, 1996, 69: 2327–2319

    Article  Google Scholar 

  8. Beck F J, Polman A, Catchpole K R. Tunable light trapping for solar cells using localized surface plasmon. J Appl Phys, 2009, 105(11): 114310–114317

    Article  Google Scholar 

  9. Yang J, You J B, Chen C C, et al. Plasmonic polymer tandem solar cell. ACS Nano, 2011, 5: 6210–6217

    Article  Google Scholar 

  10. Stavytska B M, Salvador M, Kulkarni A, et al. Plasmonic enhancement of Raman scattering from the organic solar cell material P3HT/PCBM by triangular silver nanoprisms. J Phys Chem C, 2011, 115: 20788–20794

    Article  Google Scholar 

  11. Qiao L F, Wang D, Zuo L J, et al. Localized surface plasmon resonance enhanced organic soalr cell with gold nanospheres. Appl Energ, 2011, 88: 848–852.

    Article  Google Scholar 

  12. Heo M, Cho H, Jung J W, et al. High-performance organic optoelectronic devices enhanced by surface plasmon resonance. Adv Mater, 2011, 23: 5689–5693

    Article  Google Scholar 

  13. Wang D H, Park K H, Seo J H, et al. Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters. Adv Energ Mater, 2011, 5: 766–770

    Article  Google Scholar 

  14. Xie F X, Choy C H W, Wang C D C, et al. Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers. Appl Phys Lett, 2011, 99: 153304–153306

    Article  Google Scholar 

  15. Wu J L, Chen F C, Hsiao Y S, et al. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano, 2011, 5(2): 959–967

    Article  Google Scholar 

  16. Wang D H, Kim D Y, Choi K W, et al. Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed, 2011, 50: 5519–5523

    Article  Google Scholar 

  17. Yoon W J, Jung K Y, Liu J W, et al. Plasmon enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Sol Energ Mater Sol C, 2010, 94: 128–132

    Article  Google Scholar 

  18. Gao H L, Zhang X W, Yin Z G, et al. Plasmon enhanced polymer solar cells by spin-coating Au nanoparticles on indium-tin-oxide substrate. Appl Phys Lett, 2012, 101: 133903–133906

    Article  Google Scholar 

  19. Jain P K, Eustis S, El-Sayed M A. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B, 2006, 110: 18243–18253

    Article  Google Scholar 

  20. Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. Appl Phys Lett, 2008, 93: 191113–191115

    Article  Google Scholar 

  21. Mahmouda A Y, Zhang J M, Mac D L, et al. Optically-enhanced performance of polymer solar cells with low concentration of gold nanorods in the anodic buffer layer. Org Electron, 2012, 13: 3102–3107.

    Article  Google Scholar 

  22. Seo S S, Wang X H, Murray D. Direct monitoring of gold nanorod growth. Ionics, 2009, 15: 67–71

    Article  Google Scholar 

  23. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M, et al. Gold nanorods: Synthesis, characterization and applications. Coordin Chem Rev, 2005, 249: 1870–1901

    Article  Google Scholar 

  24. Cortie M B. The weird world of nanoscale gold. Gold Bull, 2005, 37: 1–2

    Google Scholar 

  25. Pissuwan D, Valenzuela S, Cortie M B. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol, 2006, 24(2): 62–67

    Article  Google Scholar 

  26. Palik E D. Handbook of Optical Constants of Solids. New York: Academic Press, 1997

    Google Scholar 

  27. Biring S, Wang H H, Wang J K. Light scattering from 2D arrays of monodispered Ag-nanoparticles separated by tunable nano-gaps: spectral evolution and analytical analysis of plasmonic coupling. Opt Express, 2008, 16(20): 15312–15324

    Article  Google Scholar 

  28. Lee J H, Cho S, Roy A. Enhanced diode characteristics of organic solar cells using titanium suboxide electron transport layer. Appl Phys Lett, 2010, 96: 163303–163305

    Article  Google Scholar 

  29. Schilinsky P, Waldauf C, Brabec C J. Performance analysis of printed bulk heterojunction solar cells. Adv Funct Mater, 2006, 16: 1669–1672

    Article  Google Scholar 

  30. Lee J H, Park J H, Kim J S. High efficiency polymer solar cells with wet deposited plasmonic gold nanodots. Org Electron, 2009, 10: 416–420

    Article  Google Scholar 

  31. Lakowicz J R. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem, 205, 337: 171–194

  32. Murray W A, Barnes W L. Plasmonic materials. Adv Mater, 2007, 19: 3771–3782

    Article  Google Scholar 

  33. Bellessa J, Bonnand C, Plenet J C. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys Rev Lett, 2004, 93: 036404–036407

    Article  Google Scholar 

  34. Lee J, Hernandez P, Lee J. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat Mater, 2007, 6: 291–295

    Article  Google Scholar 

  35. Ru L E C, Etchegoin P G, Grand J. Mechanisms of spectral profile modification in surface-enhanced fluorescence. J Phys Chem C, 2007, 111: 16076–16079

    Article  Google Scholar 

  36. Ohkita H, Cook S, Astuti Y. Bimolecular recombination losses in polythiophene: Fullerene solar cells. J Am Chem Soc, 2008, 130: 3030–3033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YanBing Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Y., Hou, Y., Lou, Z. et al. Surface plasmonic effect and scattering effect of Au nanorods on the performance of polymer bulk heterojunction solar cells. Sci. China Technol. Sci. 56, 1865–1869 (2013). https://doi.org/10.1007/s11431-013-5263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5263-9

Keywords

Navigation