Skip to main content
Log in

A random medium model for simulation of concrete failure

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A random medium model is developed to describe damage and failure of concrete. In the first place, to simulate the evolving cracks in a mesoscale, the concrete is randomly discretized as irregular finite elements. Moreover, the cohesive elements are inserted into the adjacency of finite elements as the possible cracking paths. The spatial variation of the material properties is considered using a 2-D random field, and the stochastic harmonic function method is adopted to simulate the sample of the fracture energy random field in the analysis. Then, the simulations of concrete specimens are given to describe the different failure modes of concrete under tension. Finally, based on the simulating results, the probability density distributions of the stress-strain curves are solved by the probability density evolution methods. Thus, the accuracy and efficiency of the proposed model are verified in both the sample level and collection level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li J. Research on the stochastic damage mechanics for concrete material and structures. J Tongji Univ (Nat Sci), 2004, 32(10): 1270–1277

    Google Scholar 

  2. Mazars J. A description of micro-and macroscale damage of concrete structures. Eng Fract Mech, 1986, 25(5): 729–737

    Article  Google Scholar 

  3. Simo J C, Ju J W. Strain-and stress-based continuum damage models—I. Formulation. Int J Solids Struct, 1987, 23(7): 821–840

    Article  MATH  Google Scholar 

  4. Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete. Int J Solids Struct, 1989, 25(3): 299–326

    Article  Google Scholar 

  5. Wu J Y, Li J, Faria R. An energy release rate-based plastic-damage model for concrete. Int J Solids Struct, 2006, 43(3): 583–612

    Article  MATH  Google Scholar 

  6. Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials. North-Holland: Elsevier Amsterdam, 1999

    Google Scholar 

  7. Gross D, Seelig T. Fracture mechanics: with an introduction to micromechanics. Heidelberg: Springer, 2011

    Google Scholar 

  8. Moës N, Belytschko T. Extended finite element method for cohesive crack growth. Eng Fract Mech, 2002, 69(7): 813–833

    Article  Google Scholar 

  9. Dugdale D S. Yielding of steel sheets containing slits. J Mech Phys Solids, 1960, 8(2): 100–104

    Article  Google Scholar 

  10. Barenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech, 1962, 7: 55–129

    Article  MathSciNet  Google Scholar 

  11. Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement Concr Res, 1976, 6(6): 773–781

    Article  Google Scholar 

  12. Xu X P, Needleman A. Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids, 1994, 42(9): 1397–1434

    Article  MATH  Google Scholar 

  13. Rots J G, de Borst R. Analysis of mixed-mode fracture in concrete. J Eng Mech, 1987, 113(11): 1739–1758

    Article  Google Scholar 

  14. Ren X, Li J. Dynamic fracture in irregularly structured systems. Phys Rev E, 2012, 85(5): 55102

    Article  MathSciNet  Google Scholar 

  15. Chen J B, Li J. Stochastic harmonic function and spectrum representations. Chinese J Theo Appl Mech, 2011, 43(3): 505–513

    Google Scholar 

  16. Liang S X, Sun W L, Li J. Simulation of multi-dimensional random fields by stochastic harmonic functions. J Tongji Univ (Nat Sci), 2012, 40(7): 965–970

    Google Scholar 

  17. Xu X F, Graham-Brady L. A stochastic computational method for evaluation of global and local behavior of random elastic media. Comput Method Appl M, 2005, 194(42): 4362–4385

    Article  MATH  Google Scholar 

  18. Ren X D, Yang W Z, Zhou Y, et al. Behavior of high-performance concrete under uniaxial and biaxial loading. Aci Mater J, 2009, 105(6): 548–557

    Google Scholar 

  19. Bazant Z P, Pfeiffer P A. Determination of fracture energy from size effect and brittleness number. Aci Mater J, 1987, 84(6): 755–767

    Google Scholar 

  20. Carpinteri A, Chiaia B. Size effects on concrete fracture energy: Dimensional transition from order to disorder. Mater Struct, 1996, 29(5): 259–266

    Article  Google Scholar 

  21. Carpinteri A, Chiaia B, Ferro G. Size effects on nominal tensile strength of concrete structures: Multifractality of material ligaments and dimensional transition from order to disorder. Mater Struct, 1995, 28(6): 311–317

    Article  Google Scholar 

  22. Li J, Chen J B. Probability density evolution method for analysis of stochastic structural dynamic response. Chinese J Theo Appl Mech, 2003, 35(4): 437–442

    Google Scholar 

  23. Zeng S J, Li J. Analysis on constitutive law of plain concrete subjected to uniaxial compressive stress based on generalized probability density evolution method. J Tongji Univ (Nat Sci), 2010, 38(6): 798–804

    Google Scholar 

  24. Chen J B, Li J, Difference method for probability density evolution equation of stochastic structural response. Chinese Quart Mech, 2005, 25(1): 22–28

    Google Scholar 

  25. Li J, Xu J, Chen J B. The use of quasi-symmetric point method in probability density evolution theory. J Wuhan Tech Univ, 2010, 32(9): 1–5

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, S., Ren, X. & Li, J. A random medium model for simulation of concrete failure. Sci. China Technol. Sci. 56, 1273–1281 (2013). https://doi.org/10.1007/s11431-013-5200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5200-y

Keywords

Navigation