Skip to main content
Log in

InP based DFB laser array integrated with MMI coupler

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The techniques used for the fabrication of photonic integrated circuit (PIC) chip are introduced briefly. Then a four channel DFB laser array integrated with MMI coupler and semiconductor optical amplifier (SOA) fabricated with butt-joint technique, varied ridge width and holographic exposure techniques is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koch T L, Koren U. Semiconductor photonic integrated circuits. IEEE J Quantum Electron, 1991, 27: 641–653

    Article  Google Scholar 

  2. Nagarajan R, Kato M, Corzine S, et al. Monolithic, Multi-Channel DWDM Transmitter Photonic Integrated Circuits. In: Semiconductor Laser Conference, 2008, ISLC 2008, IEEE 21st International, MA3: 5–6

  3. Radhakrishnan N, Charles H J, Richard P S, et al. Large-scale photonic integrated circuits. IEEE J Sel Top Quantum Electro, 2005, 11: 50–65

    Article  Google Scholar 

  4. Nagarajan R, Kato M, Pleumeekers J, et al. Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s. J Electron Lett, 2006, 42: 771–773

    Article  Google Scholar 

  5. Itagaki T, Kimura T, Goto K, et al. Analysis of the in-plane bandgap distribution in selectively grown InGaAs/ InGaAsP multiple quantum well by low pressure metal organic chemical vapor deposition. J Crystal Growth, 1994, 145: 256–262

    Article  Google Scholar 

  6. Liu G L, Wang W, Zhang J Y, et al. Tunable MQW-DBR laser by using selective area growth. Proc SPIE, 2000, 4086: 143

    Article  Google Scholar 

  7. Illeck S, Wolf T, Schier M, et al. Tunable twin-guide laser with integrated waveguide. Jpn J Appl Phys, 1994, 33: L1459–l1452

    Article  Google Scholar 

  8. Matz R, Bauer J G, Clemens P, et al. Development of a photonic integrated transceiver chip for WDM transmission. IEEE Photonics Technol Lett, 1994, 6: 1327–1329

    Article  Google Scholar 

  9. Zhu H L, Liang S, Zhao L J, et al. A selective area growth double stack active layer electroabsorption modulator integrated with a dis tributed feedback laser. Chin Sci Bull, 2009, 54: 3627–3627

    Article  Google Scholar 

  10. Tohmori Y, Komori K, Arai S, et al. Low threshold current CW operation GaInAsP/InP bundle integrated guide distributed-Bragg-reflector (BIG-DBR) lasers. Electron Lett, 1988, 21: 743–745

    Article  Google Scholar 

  11. Yan X J, Masamovic M L, Skogen E J, et al. Optical mode converter integration with InP-InGaAsP active and passive waveguide using a single regrowth process. IEEE Photonics Technol Lett, 2003, 14: 1249–1251

    Google Scholar 

  12. Xia W, Pappert S A, Zhu B, et al. Ion mixing of III-V compound semiconductor layered structures. J Appl Phys, 1992, 71: 2602–2610

    Article  Google Scholar 

  13. Mclean C J, Mckee A, Lullo G, et al. Quantum well intermixing with high spatial selectivity using a pulse laser technique. Electron Lett, 1995, 31: 1284–1286

    Article  Google Scholar 

  14. Si S K, Yeo D H, Yoon H H, et al. Area selectivity of InGaAsP-InP multi quantum-well intermixing by impurity free vacancy diffusion. IEEE J Sel Top Quantum Electron, 1998, 4: 619–623

    Article  Google Scholar 

  15. Tsuruoka K, Kobayashi R, Ohsawa Y, et al. Four-channel 10-Gb/s operation of AlGaInAs-MQW-BH-DFB-LD array for 1.3-μm CWDM systems. IEEE J Sel Top Quantum Electron, 2005, 11: 1169–1173

    Article  Google Scholar 

  16. Hua F, Gaur A, Sun Y, et al. Processing dependent behavior of soft imprint lithography on the 1–10 nm scale. IEEE Trans Nanotechnol, 2006, 5: 301–308

    Article  Google Scholar 

  17. Zhu H L, Xu X D, Wang H, et al. The fabrication of eight-channel DFB laser array using sampled gratings. IEEE Photonics Technol Lett, 2010, 22: 353–355

    Article  Google Scholar 

  18. Li J S, Wang H, Chen X F, et al. Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology. Opt Express, 2009, 17: 5240–5245

    Article  MathSciNet  Google Scholar 

  19. Kong D H, Zhu H L, Liang S, et al. All-optical clock recovery using a ridge width varied two-section partly gain-coupled DFB self-pulsation laser. Opt Communi, 2010, 283: 3970–3975

    Article  Google Scholar 

  20. Kong D H, Zhu H L, Liang S, et al. A Widely Tunable Ridge Width Varied Two-section partly Gain-Coupled DFB Self-pulsation Laser for Optical Microwave Generation. In: Asia Communi-caions and Photonics Conference and Exhibition, Shanghai, China, 2009, Nov, FB3, 02-05

  21. Liu G L, Wang W, Zhang J Y, et al. Wavelength tunable single ridge wavegaide electroabsorption modulated DFB laser. Chinese J Lasers, 2001, 28: 1057–1060

    Google Scholar 

  22. Rong Y. Arrayed waveguide grating component and its applications (Chinese). Opt Communi Technol, 2010, 1: 1–5

    Google Scholar 

  23. Hou L P, Haji M, Akbar J, et al. CWDM source based on Al-GaInAs/InP monolithically integrated DFB laser array. Opt Lett, 2011, 36: 4188–4190

    Article  Google Scholar 

  24. Zah C, Amersfoort M R, Pathak B N, et al. Multiwavelength DFB laser arrays with integrated combiner and optical amplifier for WDM optical networks. IEEE J Sel Top In Quantum Electron, 1997, 3: 584–597

    Article  Google Scholar 

  25. Chung Y D, Sim J S, Kim S B, et al. Wavelength-selectable 8-channnel WDM optical transmitter. J Korean Phys Soc, 2004, 45: 605–608

    Google Scholar 

  26. Kwon O K, Kim J H, Kim K H, et al. Widely tunable multichannel grating cavity laser. IEEE Photonics Technol Lett, 2006, 18: 1699–1701

    Article  Google Scholar 

  27. Kikuchi N, Shibaka Y, Okamoto H, et al. High-speed error-free signal selection by a monolithically integrated 64-channel WDM channel selector. OFC 2002, TuF4

  28. Minford W J, Korotky S K, Alferness R D. Low-loss Ti: LiNbO3 waveguide bends at λ=1.3 μm. IEEE J Quantum Electron, 1982, 18: 1802–1806

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongLiang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Ma, L., Liang, S. et al. InP based DFB laser array integrated with MMI coupler. Sci. China Technol. Sci. 56, 573–578 (2013). https://doi.org/10.1007/s11431-012-5118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-5118-9

Keywords

Navigation