Skip to main content
Log in

Cryogenic treatment induced hardening for Cu-Zr-Ag-Al bulk metallic glasses

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Little is known about the mechanical properties of bulk metallic glassy alloys (BMGs) after cryogenic treatment. In this study, the effects of cryogenic treatment (CT) on the microstructural transition and the mechanical properties of Cu-based bulk metallic glass (BMG) were studied. The results showed that submicron AlCu2Zr and Cu5Zr phases can precipitate from the Cu-Zr-Ag-Al matrix after 192 h CT. The formation of these nanometer-sized crystalline phases substantially enhanced the mechanical properties of the bulk amorphous alloy. The micro-hardness and the compressive strength were found to increase respectively from 501 HV and 1510 MPa to 595 HV and 1910 MPa after cryogenic treatment. CT is a promising approach to strengthening metal glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson W L. Bulk amorphous metal-An emerging engineering material. JOM, 2002, 54(3): 40–43

    Article  Google Scholar 

  2. Liu X J, Chen G L, Hou H Y, et al. Atomistic mechanism for nanocrystallization of metallic glasses. Acta Mater, 2008, 56(12): 2760–2769

    Article  Google Scholar 

  3. Das J, Tang M B, Kim K B, et al. “Work-hardenable” ductile bulk metallic glass. Phys Rev Lett, 2005, 94(20): 205501

    Article  Google Scholar 

  4. Inoue A, Zhang W, Zhang T, et al. High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater, 2001, 49: 2645–2652

    Article  Google Scholar 

  5. Inoue A, Zhang W. Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys. Mater Trans, 2002, 43: 2921–2925

    Article  Google Scholar 

  6. Wang Q, Qiang J B, Wang Y M, et al. Formation and optimization of Cu-based Cu-Zr-Al bulk metallic glasses. Mater Sci Forum, 2005, 3381: 475–479

    Google Scholar 

  7. Inoue A, Zhang W, Zhang T, et al. Cu-based bulk glassy alloys with high tensile strength of over 2000 MPa. J Non-Cry Solids, 2002, 304: 200–209

    Article  Google Scholar 

  8. Wang H R, Teng X Y, Shi Z Q, et al. Study on microstructure and crystallization of amorphous Cu56Zr44 alloy by means of isothermal annealing. Acta Phys Sin, 2001, 50(11): 2192–2197

    Google Scholar 

  9. Zhang W, Zhang Q S, Qin C L, et al. Synthesis and properties of Cu-Zr-Ag-Al glassy alloys with high glass-forming ability. Mater Sci Eng B, 2008, 148: 92–96

    Article  Google Scholar 

  10. Yao K F, Zang C Q. Fe-based bulk metallic glass with high plasticity. Appl Phys Lett, 2007, 90: 061901

    Article  Google Scholar 

  11. Hajlaoui K, Yavari A R, Das J, et al. Ductilization of BMGs by optimization of nanoparticle dispersion. J Alloys Compd, 2007, 434–435: 6–9

    Article  Google Scholar 

  12. Kawashima A, Zeng Y Q, Fukuhara M, et al. Mechanical properties of a Ni60Pd20P17B3 bulk glassy alloy at cryogenic temperatures. Mater Sci Eng A, 2008, 498: 475–481

    Article  Google Scholar 

  13. Kawashima A, Zeng Y Q, Xie G Q, et al. Microstructure in a Ni60Pd20P17B3 bulk metallic glass compressively fractured at cryogenic temperature. Mater Sci Eng A, 2010, 528: 391–396

    Article  Google Scholar 

  14. Ma G Z, Chen D, Jiang Y, et al. Cryogenic treatment-induced martensitic transformation in Cu-Zr-Al bulk metallic glass composite. Intermetallics, 2010, 18: 1254–1257

    Article  Google Scholar 

  15. Wang K, Chen M W, Pan D, et al. Plastic deformation energy of bulk metallic glasses. Mater Sci Eng B, 2008, 148: 101–104

    Article  Google Scholar 

  16. Oh J C, Ohkubo T, Kim Y C, et al. Phase separation in Cu43Zr43Al7-Ag7 bulk metallic glass. Scripta Mater, 2005, 53: 165–169

    Article  Google Scholar 

  17. Degtyareva V F, Porsch F, Ponyatovskiian E G, et al. Structural investigations of the amorphous alloy Al30Ge70 under high pressure. Phys Rev B, 1996, 53: 8337–8339

    Article  Google Scholar 

  18. Sun L L, Wang W K, He D W, et al. Reversible phase transition between amorphous and crystalline in Zr41.2Ti13.8Cu12.5Ni10Be22.5 under high pressure at room temperature. Appl Phys Lett, 2000, 76: 2874–2876

    Article  Google Scholar 

  19. Zhang X Y, Zhang J W, Wang W K. Effect of pressure on the microstructure of α-Fe/Sm2(Fe, Si)17Cx nanocomposite magnets. J Appl Phys, 2001, 89: 477–481

    Article  Google Scholar 

  20. Porter D A, Easterling K E. Phase Transformations in Metals and Alloys. New York: Van Nostrand-Reinhold, 1981. 263

    Google Scholar 

  21. Pauly S, Liu G, Wang G, et al. Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites. Acta Mater, 2009, 57: 5445–5453

    Article  Google Scholar 

  22. Das J, Paulya S, Bostrom M, et al. Designing bulk metallic glass and glass matrix composites in martensitic alloys. J Alloys Compd, 2009, 483: 97–101

    Article  Google Scholar 

  23. Lu K, Wang J T. Effect of pre-annealing on crystallization kinetics of amorphous Ni-P alloys. Acta Metall Sin, 1990, 26: 316–320

    Google Scholar 

  24. Lu K, Wang J T, Dong L. In situ observation on dynamic crystallization in amorphous Ni-P alloy foil with TEM. Acta Metall Sin, 1991, 27: 108–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Zhang, L., Liu, J. et al. Cryogenic treatment induced hardening for Cu-Zr-Ag-Al bulk metallic glasses. Sci. China Technol. Sci. 56, 637–641 (2013). https://doi.org/10.1007/s11431-012-5107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-5107-z

Keywords

Navigation