Skip to main content
Log in

Advanced functional nanomaterials with microemulsion phase

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Significant progress has been made in the formulation of the functional nanomaterials with microemulsion phase. Microemulsion phase can be considered as true nanoreactors, which can be used to synthesize nanomaterials. Properties and the mechanism of nanoparticle formation with microemulsion phase are reviewed in this paper. Preparation of the various nanomaterials, such as metal nanomaterials, oxide nanomaterials, magnetic nanoparticles, inorganic and inorganic compounds nanomaterials, metallic-organic composite nanomaterials, and other composite nanomaterials, are investigated with different microemulsion phases. The possible formation mechanisms are presented with the schematic diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leung R, Hou M J, Manohar C, et al. Reaction kinetics as a probe for the dynamic structure of microemulsion. Acs Sym Ser, 1985, 272: 325–344

    Article  Google Scholar 

  2. Liu H Z, Guo C, Yu J, et al. Principle and Application of Microemulsion Phase Extration. Beijing: Science Press, 2005

    Google Scholar 

  3. Chai J L, Yang X D, Gao Y H, et al. Studies on the middle phase microemulsion of alkyl polyglucoside. Indian J Chem A 2007, 46: 1075–1080

    Google Scholar 

  4. Chai J L, Wu Y T, Li X Q, et al. Phase behavior of the microemulsion systems containing alkyl polyglucoside and hexadecyl-trimethyl-ammonium bromide. J Chem Eng Data, 2011, 56(1): 48–52

    Article  Google Scholar 

  5. Winsor P A. Hydrotropy, solubilisation and related emulsification processes. Trans Faraday Soc, 1948, 44: 376–398

    Article  Google Scholar 

  6. Moulik S P, Paul B K. Structure, dynamics and transport properties of microemulsions. Adv Colloid Interface Sci, 1998, 78: 99–195

    Article  Google Scholar 

  7. Nagarajan R, Ruckenstein E. Molecular theory of microemulsions. Langmuir, 2000, 16: 6400–6415

    Article  Google Scholar 

  8. Fanun M. microemulsions—Properties and Application. Surfactant Science Series, vol 144. London: Taylor Francis Group, CRC Press, 2008. 19

    Google Scholar 

  9. Lawrence M J, D R G. Microemulsion-based media as novel drug delivery systems. Adv Drug Delivery Rev, 2000, 45(1): 85–121

    Article  Google Scholar 

  10. Podlogar F, Gasperlin M, Tomsic M, et al. Structural characterisation of water-Tween 40/Imwitor 308-isopropyl myristate Microemulsion using different experimental methods. Int J Pharm, 2004, 276: 115–128

    Article  Google Scholar 

  11. Stilbs P. A comparative study of micellar solubilisation for combination of surfactants and solubilisates using Fourier transform pulsed-gradient spin-echo NMR multicomponent self-diffusion technique. J Colloid Interface Sci, 1986, 94(2): 463–469

    Article  Google Scholar 

  12. Regev O, Ezrahi S, Aserin A, et al. A study of the microstrcture of a four-component nonionic microemulsions by cryo-TEM, NMR, SAXS, and SANS. Langmuir, 1996, 12(3): 668–674

    Article  Google Scholar 

  13. Wasserscheid P, Keim W. Ionic liquids—New “solutions” for transition metal catalysis. Angew Chem, 2000, 39(21): 3772–3789

    Article  Google Scholar 

  14. Bates E D, Mayton R D, Ntai I, et al. CO2 capture by a task-specific ionic liquid. J Am Chem Soc, 2002, 124(6): 926–927

    Article  Google Scholar 

  15. Bluhm M E, Bradley M G, III R B, et al. Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc, 2006, 128(24): 7748–7749

    Article  Google Scholar 

  16. Li Z H, Liu Z M, Zhang J L, et al. Synthesis of single-crystal gold nanosheets of large size in ionc liquids. J Phys Chem B, 2005, 109(30): 14445–14448

    Article  Google Scholar 

  17. Johnston K P, Harrison K L, Clarke M J, et al. Water-in-carbon dioxide microemulsions: an environment for hydrophiles including proteins. Science, 1996, 271(5249): 624–626

    Article  Google Scholar 

  18. Liu J C, Han B X, Zhang J L, et al. Formation of water-in-CO2 microemulsions with non-fluorous surfactant Ls-54 and solubilization of biomacromolecules. Chem Eur J, 2002, 8(6): 1356–1360

    Article  Google Scholar 

  19. Eastoe J L, Gold S, Rogers S, et al. Designed CO2-philes stabilize water-in-carbon dioxide microemulsions. Angew Chem Int Ed, 2006, 45: 3675–3677

    Article  Google Scholar 

  20. Schwan M, Kramer L G A, Sottmann T, et al. Phase behaviour of propane- and SCCO2-microemulsions and their prominent role for the recently proposed foaming procedure POSME (Principle of Supercritical Microemulsion Expansion). Phys Chem Chem Phys, 2010, 12(23): 6247–6252

    Article  Google Scholar 

  21. Cheng S Q, Zhang J L, Zhang Z F, et al. Novel microemulsions: ionic liquid-in-ionic liquid. Chem Commun, 2007, (24): 2497–2499

    Article  Google Scholar 

  22. Bolzinger-Thevenin M A, Grossiord J L, Poelman M C. Characterization of a sucrose ester microemulsion by freeze fracture electron micrograph and small angle neutron scattering experiments. Langmuir, 1999, 15(7): 2307–2315

    Article  Google Scholar 

  23. Liu J H, Cheng S Q, Zhang J L, et al. Reverse micelles in carbon dioxide with ionic-liquid domains. Angew Chem Int Ed, 2007, 46: 3313–3315

    Article  Google Scholar 

  24. Weidenkaff A, Ebbinghaus S G, Lippert T. Ln1−x AxCoO3 (Ln = Er, La; A = Ca, Sr)/carbon nanotube composite materials applied for rechargeable Zn/air batteries. Chem Mater, 2002, 14: 1797–1805

    Article  Google Scholar 

  25. Zhang R, Liu J, Han B, et al. Recovery of nanoparticles from (EO)8(PO)50(EO)8 p-Xylene/H2O microemulsions by tuning the temperature. Langmuir, 2003, 19: 8611–8614

    Article  Google Scholar 

  26. López-Quintela M A. Synthesis of nanomaterials in microemulsions: Formation mechanisms and growth control. Curr Opin Colloid Interface Sci, 2003, 8: 137–144

    Article  Google Scholar 

  27. Wu M L, Chen D H, Huang T C. Preparation of Au/Pt bimetallic nanoparticles in water-oil microemulsions. Chem Mater, 2011, 13: 599–606

    Article  Google Scholar 

  28. Wu M L, Chen D H, Huang T C. Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir, 2001, 17: 3877–3883

    Article  Google Scholar 

  29. Wu M L, Lai L B. Synthesis of Pt/Ag bimetallic nanoparticles in water-in-oil microemulsions. Colloids Surf A, 2004, 244: 149–157

    Article  Google Scholar 

  30. Chen D H, Chen C J. Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil mecroemulsions. J Mater Chem, 2002, 12: 1557–1562

    Article  Google Scholar 

  31. Wu M L, Chen D H, Huang T C. Preparation of Pd/Pt bimetallic nanoparticles in water/AOT/isooctane microemulsions. J Colloid Interface Sci, 2001, 243: 102–108

    Article  Google Scholar 

  32. Tan W, Santra S, Zhang P, et al. Method for identifying cells. U. S. Patent, Patent serial No. 010807, 2002

  33. Bagwe R P, Khilar K C. Effects of the intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelles of AOT. Langmuir, 1997, 13: 6432–6438

    Article  Google Scholar 

  34. Petit C, Lixon M P, Pileni M P. In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem, 1993, 97: 12974–12983

    Article  Google Scholar 

  35. Nassar N N, Husein M M. Study and modeling of iron hydroxide nanoparticle uptake by AOT (w/o) microemulsions. Langmuir, 2007, 23: 13093–13103

    Article  Google Scholar 

  36. Fanun M. Microemulsions—Properties and Application. Surfactant Science Series, vol 144. London: Taylor Francis Group, CRC Press, 2008. 451

    Google Scholar 

  37. Fanun M. Microemulsions—Properties and Application. Surfactant Science Series, vol 144. London: Taylor Francis Group, CRC Press, 2008. 452

    Google Scholar 

  38. Chew C H G L M, Shah D O. The effect of alkanes on the formation of ultrafine silver bromide particles in ionic w/o microemulsions. J Disper Sci Technol, 1990, 11: 593–609

    Article  Google Scholar 

  39. Husein M, Rodil E, Vera J H. A novel approach for the preparation of AgBr nanoparticles from their bulk solid precursor using CTAB microemulsions. Langmuir, 2006, 22: 2264–2272

    Article  Google Scholar 

  40. Husein M, Rodil E, Vera J H. A novel method for the preparation of silver chloride nanoparticles starting from their solid powder using microemulsions. J Colloid Interface Sci, 2005, 288:457–467

    Article  Google Scholar 

  41. Bommarius A S, Holzwarth J F, Hatton D I C W T A. Coakescebce and solubilizate exchange in a cationic four-component reversed micellar system. J Phys Chem, 1990, 94: 7232–7239

    Article  Google Scholar 

  42. Bagwe R P, Khilar K C. Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT. Langmuir, 2000, 16: 905–910

    Article  Google Scholar 

  43. Husein M M, Weber M E, Vera J H. Nucleophilic substitution sulfonation in microemulsions and emulsions. Langmuir, 2000, 16: 9159–9167

    Article  Google Scholar 

  44. Nassar N N, Husein M M. Effect of microemulsion variables on copper oxide nanoparticle uptake by AOT microemulsions. J Colloid Interface Sci, 2007, 316: 442–450

    Article  Google Scholar 

  45. Muster J, Kim G T, Krstic V, et al. Electrical transport through individual vanadium pentoxide nanowires. Adv Mater, 2000, 12(6): 420–424

    Article  Google Scholar 

  46. Zhang J L, Han B X, Liu M H, et al. Ultrasonication-induced formation of silver nanofibers in reverse micelles and small-angle X-ray scattering studies. J Phys Chem B, 2003, 107: 3679–3683

    Article  Google Scholar 

  47. Holmes J D, Johnston K P, Doty R C, et al. Control of thickness and orientation of solution-grown silicon nanowires. Science, 2000, 287(5457): 1471–1473

    Article  Google Scholar 

  48. Gudiksen M S, Lieber C M. Diameter-Selective Synthesis of Semiconductor Nanowires. J Am Chem Soc, 2000, 122(36): 8801–8802

    Article  Google Scholar 

  49. Marinakos S M, Novak J P, III L C B, et al. Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. J Am Chem Soc, 1999, 121(37): 8518–8522

    Article  Google Scholar 

  50. Fullam S, Cottell D, Rensma H, et al. Carbon nanotube templated self-assembly and thermal processing of gold nanowires. Adv Mater, 2000, 12(19): 1430–1432

    Article  Google Scholar 

  51. Chen F X, Xu G Q, Hor T S A. Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion. Mater Lett, 2003, 57: 3282–3286

    Article  Google Scholar 

  52. Roucoux A, Schulz J, Patin H. Reduced transition metal colloids: A novel family of reusable catalysts? Chem Rev, 2002, 102(10): 3757–3778

    Article  Google Scholar 

  53. Brust M, Kiely C. Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. J Colloids Surf A, 2002, 202(2–3): 175–186

    Article  Google Scholar 

  54. Chen S, Guo C, Hu G H, et al. Effect of hydrophobicity inside PEO PPO PEO block copolymer micelles on the stabilization of gold annoparticles: experiments. Langmuir, 2006, 22: 9704–9711

    Article  Google Scholar 

  55. Sakai T, Alexandridis P. Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature. Langmuir, 2004, 20: 8426–8430

    Article  Google Scholar 

  56. Chen S, Guo C, Hu G H, et al. Dissipative particle dynamics simulation of gold nanoparticles stabilization by PEO-PPO-PEO block copolymer micelles. Colloid Polym Sci, 2007, 285: 1543–1552

    Article  Google Scholar 

  57. Hoogerbrugge P J, Koelman J. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett, 1992, 19: 155–160

    Article  Google Scholar 

  58. Groot R D, Warren P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J Chem Phys, 1997, 107: 4423–4435

    Article  Google Scholar 

  59. Cao X, Xu G, Li Y, et al. Aggregation of poly (ethylene oxide)-poly (propylene oxide) block copolymers in aqueous solution: DPD simulation study. J Phys Chem A, 2005, 109(45): 10418–10423

    Article  Google Scholar 

  60. Laradji M, Hore M J A. Nanospheres in phase-separating multicomponent fluids: A three-dimensional dissipative particle dynamics simulation. J Chem Phys, 2004, 121: 10641–10647

    Article  Google Scholar 

  61. Juan S C C, Hua C H, Chen C L, et al. Dissipative particle dynamics simulation of a gold nanoparticle system. Mol Simulat, 2005, 31(4): 277–282

    Article  Google Scholar 

  62. Chen S, Guo C, Hu G H, et al. Dissipative particle dynamics simulation of gold nanoparticles stabilization by PEO-PPO-PEO block copolymer micelles. Colloid Polym Sci, 2007, 285: 1543–1552

    Article  Google Scholar 

  63. Shou Q H, Guo C, Yang L Y, et al. Effect of pH on the single-step synthesis of gold nanoparticles using PEO-PPO-PEO triblock copolymers in aqueous media. J Phys Chem B, 2011, 363: 481–489

    Google Scholar 

  64. Alexandridis P, Holzwarth J F, Hatton T A. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules, 1994, 27(9): 2414–2425

    Article  Google Scholar 

  65. Bakshi M S, Kaura A, Bhandari P, et al. Effect of sodium dodecylsulfate and dodecyltrimethyl ammonium bromide on the morphologies of gold nanoparticles in the presence of poly (amidoamine) dendrimers. J Nanosci Nanotechnol, 2006, 6: 644–650

    Article  Google Scholar 

  66. Hickey R J,. Haynes A S, Kikkawa J M, et al. Controlling the self-assembly structure of Magnetic nanoparticles and amphiphilic block-copolymers: from micelles to vesicles. J Am Chem Soc, 2011, 133: 1517–1525

    Article  Google Scholar 

  67. White K A, Rosi N L. Gold nanoparticle-based assays for the detection of biologically relevant molecules. Nanomedicine-UK, 2008, 3(4): 543–553

    Article  Google Scholar 

  68. Wang Z L. Characterizing the structures of properties of individual wire-like nanoentities. Adv Mater, 2000, 12(17): 1295–1298

    Article  Google Scholar 

  69. Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater, 2003, 15(5): 353–389

    Article  Google Scholar 

  70. Ho W K, Yu J C, Lee S C. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem Commun, 2006, 10: 1115–1117

    Article  Google Scholar 

  71. Wang D, D Choi, Z. Yang, et al. Synthesis and Li-on insertion properties of highly crystalline mesoporous rutile TiO2. Chem Mater, 2008, 20(10): 3435–3442

    Article  Google Scholar 

  72. SJung H, Lee J K, Nastasi M, et al. Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir, 2005, 21(23): 10332–10335

    Article  Google Scholar 

  73. Zhu J S, Zhang Z, Zhang C, et al. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Anal Chem, 2002, 74(1): 120–124

    Article  Google Scholar 

  74. Zachau-Christiansen B, Jacoben T, Bay L, et al. Surface intermediates on metal electrodes at high temperature. Solid State Ionics, 1998, 113–115(1): 271–277

    Article  Google Scholar 

  75. Khomane R B. Microemulsion-mediated sol-gel synthesis of mesoporous rutile TiO2 nanoneedles and its performance as anode material for Li-ion batteries. J Colloid Interface Sci, 2011, 356(1): 369–372

    Article  Google Scholar 

  76. Chen W, Zhu Q. Synthesis of barium strontium titanate nanorods in reverse microemulsion. Mater Lett, 2007, 61(16): 3378–3380

    Article  Google Scholar 

  77. Yang Y, Gao M. Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv Mater, 2005, 17(19): 2354–2357

    Article  Google Scholar 

  78. Jeong U, Teng X, Wang Y, et al. Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater, 2007, 19(1): 33–60

    Article  Google Scholar 

  79. Zhang Q, Chou T P, Russo B, et al. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem Int Ed, 2008, 47(13): 2402–2406

    Article  Google Scholar 

  80. Law J B K, LThong J T. Field-emission-induced growth of nanowire between electrodes. Appl Phys Lett, 2008, 88: 193116–193118

    Google Scholar 

  81. Kind H Y, H.; Messer, B.; Law M, et al. Nanowire ultraviolet photodetectors and optical switches. Adv Mater, 2002, 14(2): 158–60

    Article  Google Scholar 

  82. Könenkamp R, Word R C, Godinez M. Ultraviolet electroluminescence from ZnO/polymer heterojunction lightemitting diodes. Nano Lett, 2005, 5(10): 2005–2008

    Article  Google Scholar 

  83. Ramakrishna G, Ghosh H N. Effect of particle size on the reactivity of quantum size ZnO nanoparticles and charge-transfer dynamics with adsorbed catechols. Langmuir, 2006, 19(7): 3006–3012

    Article  Google Scholar 

  84. Wang R H, Xin J H, Tao X M. UV-blocking property of dumbbell-haped ZnO crystallites on cotton fabrics. Inorg Chem, 2005, 44(11): 3926–3930

    Article  Google Scholar 

  85. Wang J F, Tsuzuki T, Sun L, et al. Reverse microemulsion-mediated synthesis of SiO2-coated ZnO composite nanoparticles: multiple cores with tunable shell thickness. ACS Appl Mat Interfaces, 2010, 2(4): 957–960

    Article  Google Scholar 

  86. Zhang J L, Liu Z M, Han B X, et al. Preparation of silica and TiO2-SiO2 core-shell nanoparticles in water-in-oil microemulsion using compressed CO2 as reactant and antisolvent. J Supercrit Fluids, 2006, 36: 194–201

    Article  Google Scholar 

  87. Dong W Y, Sun Y J, Lee C W, et al. Controllable and repeatable synthesis of thermally sStable anatase nanocrystal silica composites with highly ordered hexagonal mesostructures. J Am Chem Soc, 2007, 129: 13894–13904

    Article  Google Scholar 

  88. Abudiab T, Beitle R R. Preparation of magnetic immobilized metal affinity separation media and its use in the isolation of proteins. J Chromatogr A, 1998, 795(2): 211–217

    Article  Google Scholar 

  89. Yang C L, Guan Y P, Xing J M, et al. Synthesis and protein immobilization of monodisperse-magnetic spheres with multifunctional groups. React Funct Polym, 2006, 66: 267–273

    Article  Google Scholar 

  90. Yang C L, Guan Y P, Xing J M, et al. Preparation and characterization of monodisperse superparamagnetic poly(vinyl alcohol) beads by reverse spray suspension crosslinking. J Polym Sci Part A: Polym Chem, 2008, 46: 203–210

    Article  Google Scholar 

  91. Liu X Q, Guan Y P, Yang Y, et al. Preparation of superparamagnetic immunomicrospheres and application for antibody purification. J Appl Polym Sci, 2004, 94: 2205–2211

    Article  Google Scholar 

  92. Liu X Q, Kaminski M D, Guan Y G, et al. Preparation and characterization of hydrophobic superparamagnetic magnetite gel. J Magn Magn Mater, 2006, 306: 248–253

    Article  Google Scholar 

  93. Perez J M, Josephson L, Weissleder R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBiochem, 2004, 5(3): 261–264

    Article  Google Scholar 

  94. Korolev V V, Ramazanova A G. Adsorption of surfactants on superfine magnetite. Russ Chem Bull, 2002, 51: 2044–2049

    Article  Google Scholar 

  95. Lang Y Q, Wang Q Q, Xing J M, et al. Preparation of magnetic γ-Al2O3 supported palladium catalyst for hydrogenation of nitrobenzene. AIChE J, 2008, 54(9): 2303–2309

    Article  Google Scholar 

  96. Chen S, Li Y, Guo C, et al. Temperature-responsive magnetite/PEO PPO PEO block copolymer nanoparticles for controlled drug targeting delivery. Langmuir, 2007, 23: 12669–12676

    Article  Google Scholar 

  97. Yang L R, Guo C, Jia L W, et al. Fabrication of biocompatible temperature- and pH-responsive magnetic nanoparticles and their reversible agglomeration in aqueous milieu. Ind Eng Chem Res, 2010, 49: 8518–8525

    Article  Google Scholar 

  98. Mitchell G P, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc, 1999, 121(35): 8122–8123

    Article  Google Scholar 

  99. Can Z B, Wei D L, Wang W, et al. Facile synthesis and characterization of urchin-like CdSe nanostructures. Mater Lett, 2010, 64(14): 1601–1603

    Article  Google Scholar 

  100. Kim S W, Kim M, Lee W Y, et al. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. J Am Chem Soc, 2002, 124(26): 7642–7643

    Article  Google Scholar 

  101. David E B. Self-assembled, sub-micrometer diameter semipermeable capsules. Angew Chem Int Ed, 1999, 38(19): 2870–2872

    Article  Google Scholar 

  102. Deng Y D, Zhao L, Shen B, et al. Microwave characterization of submicrometer-sized nickel hollow sphere composites. J Appl Phys, 2006, 100(1): 14304–14305

    Article  Google Scholar 

  103. Wu Z, Yu K, Zhang S, et al. Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J Phys Chem C, 2008, 112(30): 11307–11313

    Article  Google Scholar 

  104. Baumeister E, Klaeger S. Advanced new lightweight materials: hollow-sphere composites (HSCs) for mechanical engineering applications. Adv Eng Mater, 2003, 5(9): 673–677

    Article  Google Scholar 

  105. Silvester E J, Grieser F, Sexton B A, et al. Spectroscopic studies on copper sulfide sols. Langmuir, 1991, 7(12): 2917–2922

    Article  Google Scholar 

  106. Zhang X, Wang G, Gu A, et al. CuS nanotubes for ultrasensitive nonenzymatic glucose sensors. Chem Commun, 2008, (45): 5945–5947

    Article  Google Scholar 

  107. Yuan K D, Wu J J, Liu M L, et al. Fabrication and microstructure of p-type transparent conducting CuS thin film and its application in dye-sensitized solar cell. Appl Phys Lett, 2008, 93(13): 132106–132108

    Article  Google Scholar 

  108. Raevskaya A E, Stroyuk A L, Kuchmii S Y, et al. Catalytic activity of CuS nanoparticles in hydrosulfide ions air oxidation. J Mol Catal A: Chem, 2004, 212(1–2): 259–265

    Article  Google Scholar 

  109. Jiang D H, Hu W B, Wang H R, et al. A microemulsion-template-interfacial-reaction route to copper sulfide hollow spheres. J Colloid Interface Sci, 2011, 357(2): 317–321

    Article  Google Scholar 

  110. Zhao J L, Bardecker J A, Munro A M, et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett, 2006, 6(3): 463–467

    Article  Google Scholar 

  111. Chan Y J, Steckel S, Snee P T, et al. Blue semiconductor nanocrystal laser. Appl Phys Lett, 2005, 86(7): 73102–73104

    Article  Google Scholar 

  112. Jang J S, Joshi U A, Lee J S. Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J Phys Chem C, 2007, 111(35): 13280–13287

    Article  Google Scholar 

  113. Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013–2016

    Article  Google Scholar 

  114. Xu W, Akins D L. Reverse micellar synthesis of CdS nanoparticles and self-assembly into a superlattice. Mater Lett, 2004, 58(21): 2623–2626

    Article  Google Scholar 

  115. Ethayaraja M, Dutta K, Muthukumaran D, et al. Nanoparticle formation in water-in-oil microemulsions: experiments, mechanism, and Monte Carlo simulation. Langmuir, 2007, 23(6): 3418–3423

    Article  Google Scholar 

  116. Ghows N, Entezari M H. A novel method for the synthesis of CdS nanoparticles without surfactant. Ultrason Sonochem, 2011, 18(1): 269–275

    Article  Google Scholar 

  117. Ghows N, Entezari M H. A novel method for the synthesis of CdS nanoparticles without surfactant. Ultrason Sonochem, 2011, 18(1): 269–275

    Article  Google Scholar 

  118. Liu L P, Fan D W, Mao H Z, et al. Multi-phase equilibrium microemulsions and synthesis of hierarchically structured calcium carbonate through microemulsion-based routes. J Colloid Interface Sci, 2007, 306(1): 154–160

    Article  Google Scholar 

  119. Hartmann M. Ordered Mesoporous Materials for Bioadsorption and Biocatalysis. Chem. Mater, 2005, 17(18): 4577–4593

    Article  MathSciNet  Google Scholar 

  120. Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B, 2005, 56: 9–35

    Article  Google Scholar 

  121. Gallis K W, Araujo J T, Duff K J, et al. The use of mesoporous silica in liquid chromatography. Adv Mater, 1999, 11(17): 1452–1455

    Article  Google Scholar 

  122. Vallet-Regi M, Ramila A, Real R P d, et al. A new property of MCM-41: drug delivery system. Chem Mater, 2001, 13: 308–311

    Article  Google Scholar 

  123. Carroll N J, Pylypenko S, Atanassov P B, et al. Microparticles with bimodal nanoporosity derived by microemulsion templating. Langmuir, 2009, 25(23): 13540–13544

    Article  Google Scholar 

  124. Zhang J L, Han B X, Liu D X, et al. Effects of ultrasound on the microenvironment in reverse micelles and synthesis of nanorods and nanofibers. Phys Chem Chem Phys, 2004, 6: 2391–2395

    Article  Google Scholar 

  125. Xiao F S, L F Wang, Yin C Y, et al. Catalytic properties of hierarchical mesoporous zeo-lites templated with a mixture of small organic am-monium salts and mesoscale cationic polymers. Angew Chem Int Ed, 2006, 45: 3090–3093

    Article  Google Scholar 

  126. Liu S, Zhang H Y, Meng X G, et al. Ordered hexagonal mesoporous silica materials (SBA-15) with additional disordered large-mesopore networks formed by gaseous expansion. Micro Meso Mater, 2010, 136: 126–131

    Article  Google Scholar 

  127. Boal A K, Rotello V M. Fabrication and self-optimization of multi-valent receptors on nanoparticle scaffolds. J Am Chem Soc, 2000, 122: 734–735

    Article  Google Scholar 

  128. Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281: 2016–2018

    Article  Google Scholar 

  129. Zhang J L, Han B X, Chen J, et al. Synthesis of Ag/BSA composite nanospheres from water-in-oil microemulsion using compressed CO2 as antisolvent. Biootechnol Bioeng, 2005, 85(3): 274–279

    Article  MathSciNet  Google Scholar 

  130. Prakash M J, Oh M, Liu X F, et al. Edge-directed [(M2)2L4] tetragonal metal-organic polyhedra decorated using a square paddle-wheel secondary building unit. Chem Commun, 2010, 46(12): 2049–2051

    Article  Google Scholar 

  131. Nijem N, Veyan J F, Kong L Z, et al. Interaction of molecular hydrogen with microporous metal organic framework materials at room temperature. J Am Chem Soc, 2010, 132(5): 1654–1664

    Article  Google Scholar 

  132. Gu Z Y, Yan X P. Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew Chem, 2010, 122(8): 1519–1522

    Google Scholar 

  133. Wu C D, Lin W. Heterogeneous asymmetric catalysis with homochiral metal-organic frameworks: network-structure-dependent catalytic activity. Angew Chem, 2007, 119(7): 1093–1096

    Article  Google Scholar 

  134. Zhao Y J, Zhang J L, Han B X, et al. Metal-organic framework nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system. Angew Chem, 2011, 123: 662–665

    Article  Google Scholar 

  135. Linssen T, Mees F, Cassiers K, et al. Characterization of the acidic properties of mesoporous aluminosilicates synthesized from leached saponite with additional aluminum incorporation. J Phys Chem B, 2003, 107(33): 8599–8606

    Article  Google Scholar 

  136. Perathoner S, Lanzafame P, Passalacqua R, et al. Use of mesoporous SBA-15 for nanostructuring titania for photocatalytic applications. Micro Meso Mate, 2006, 90(1–3): 347–361

    Article  Google Scholar 

  137. El-Safty S A. Review on the key controls of designer copolymer-silica mesophase monoliths (HOM-type) with large particle morphology, ordered geometry and uniform pore dimension. J Porous Mater, 2008, 15(4): 369–387

    Article  Google Scholar 

  138. El-Safty S A, Ismail A A, Matsunaga H, et al. Optical nanoscale pool-on-surface design for control sensing recognition of multiple cations. Adv Func Mater, 2008, 18(10): 1485–1500

    Article  Google Scholar 

  139. Gaoa L, Wua Z Y, Yanga J Y, et al. Optimization of mesoporous silica through nano-casting to capture nitrosamines in environment. Micro Meso Mater, 2010, 131(1–3): 274–281

    Article  Google Scholar 

  140. El-Safty S, Shahat A, Ogawa K, et al. Highly ordered, thermally/hydrothermally stable cubic Ia3d aluminosilica monoliths with low silica in frameworks. Micropor Mesopor Mat, 2011, 138(1–3): 51–62

    Article  Google Scholar 

  141. Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res, 1998, 13: 94–117

    Article  Google Scholar 

  142. Chen X, Wu T, Wang Q, et al. Shield effect of silicate on adsorption of proteins onto silicon-doped hydroxyapatite (100) surface. Biomaterials, 2008, 29(15): 2423–2432

    Article  Google Scholar 

  143. Yang C, Yang P P, Wang W X, et al. Synthesis and characterization of Eu-doped hydroxyapatite through a microwave assisted microemulsion process. Solid State Sci, 2009, 11(11): 1923–1928

    Article  Google Scholar 

  144. Carballido-Landeira J, Vanag V K, Epstein I R. Patterns in the Belousov-Zhabotinsky reaction in water-in-oil microemulsion induced by a temperature gradient. Phys Chem Chem Phys, 2010, 12(15): 3656–3665

    Article  Google Scholar 

  145. Xia H, Wang Q. Ultrasonic irradiation: A novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem Mater, 2002, 14(5): 2158–2165

    Article  Google Scholar 

  146. Li Y, Yu J, Kuo Z X. The influence of silane treatment on nylon 6/nano-SiO2 in situ polymerization. J Appl Polym Sci, 2002, 184(4): 827–834

    Article  Google Scholar 

  147. Bockstaller M R, Thomas E L. Optical properties of polymer-based photonic nanocomposite materials. J Phys Chem B, 2003, 107(37): 10017–10024

    Article  Google Scholar 

  148. Hussain I, Brust M, Papworth A J, et al. Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir, 2003, 19(11): 4831–4835

    Article  Google Scholar 

  149. Zhang J L, Liu Z M, Han B X, et al. A novel method to synthesize polystyrene nanospheres immobilized with silver nanoparticles by using compressed CO2. Chem Eur J, 2004, 10: 3531–3536

    Article  Google Scholar 

  150. Han L, Wei H, Tu B, et al. A facile one-pot synthesis of uniform core-shell silver nanoparticle@mesoporous silica nanospheres. Chem Commun, 2011, 47: 8536–8538

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or HuiZhou Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Xu, P., Zhou, H. et al. Advanced functional nanomaterials with microemulsion phase. Sci. China Technol. Sci. 55, 387–416 (2012). https://doi.org/10.1007/s11431-011-4687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4687-3

Keywords

Navigation