Skip to main content
Log in

Complex bursting patterns in Van der Pol system with two slowly changing external forcings

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the generation of complex bursting patterns in Van der Pol system with two slowly changing external forcings. Complex bursting patterns, including complex periodic bursting and chaotic bursting, are presented for the cases when the two frequencies are commensurate and incommensurate. These complex bursting patterns are novel and have not been reported in previous work. Based on the fast-slow dynamics, the evolution processes of the slow forcing are presented to reveal the dynamical mechanisms underlying the appearance of these complex bursting patterns. With the change of amplitudes and frequencies, the slow forcing may visit the spiking and rest areas in different ways, which leads to the generation of different complex bursting patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu Q S, Gu H G, Yang Z Q, et al. Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: Experiments and analysis. Acta Mech Sin, 2008; 24: 593–628

    Article  Google Scholar 

  2. Lu Q S, Yang Z Q, Duan L X, et al. Dynamics and transitions of firing patterns in deterministic and stochastic neuronal systems. Chaos Solitons Fract, 2009; 40: 577–597

    Article  MathSciNet  MATH  Google Scholar 

  3. Meng P, Lu Q S, Wang Q Y. Dynamical analysis of bursting oscillations in the Chay-Keizer model with three time scales. Sci China Tech Sci, 2011; 54: 2024–2032

    Article  Google Scholar 

  4. Duan L X, Lu Q S, Cheng D Z. Bursting of Morris-Lecar neuronal model with current-feedback control. Sci China Ser E-Tech Sci, 2009; 52: 771–781

    Article  MATH  Google Scholar 

  5. Bi Q S. The mechanism of bursting phenomena in Belousov-Zhabotinsky (BZ) chemical reaction with multiple time scales. Sci China Tech Sci, 2010; 53: 748–760

    Article  MATH  Google Scholar 

  6. Feng J M, Gao Q Y, Li J, et al. Current oscillations during the electrochemical oxidation of sulfide in the presence of an external resistor. Sci China Ser B-Chem, 2008; 51: 333–340

    Article  Google Scholar 

  7. Savino G V, Formigli C M. Nonlinear electronic circuit with neuron like bursting and spiking dynamics. BioSystems, 2009; 97: 9–14

    Article  Google Scholar 

  8. Vidal A. Stable periodic orbits associated with bursting oscillations in population dynamics. Positive Systems, LNCIS, 2006; 341: 439–446

    Article  MathSciNet  Google Scholar 

  9. Butera R J Jr, Rinzel J, Smith J C. Models of respiratory rhythm generation in the pre-Böttzinger complex. I. Bursting pacemaker neurons. J Neurophysiol, 1999; 82: 382–97

    Google Scholar 

  10. Kepecs A, Wang X J, Lisman J. Bursting neurons signal input slope. J Neurosci, 2002; 22: 9053–9062

    Google Scholar 

  11. Prince D A. Neurophysiology of epilepsy. Annu Rev Neurosci, 1978; 1: 395–415

    Article  Google Scholar 

  12. Izhikevich E M. Neural excitability, spiking and bursting. Int J Bifurcat Chaos, 2000; 10: 1171–1266

    Article  MathSciNet  MATH  Google Scholar 

  13. Han X J, Bi Q S. Bursting oscillations in Duffing’s equation with slowly changing external forcing. Commun Nonlinear Sci Numer Simulat, 2011; 16: 4146–4152

    Article  MathSciNet  MATH  Google Scholar 

  14. Han X J, Jiang B, Bi Q S. Symmetric bursting of focus-focus type in the controlled Lorenz system with two time scales. Phys Lett A, 2009; 373: 3643–3649

    Article  Google Scholar 

  15. Curtu R. Singular Hopf bifurcations and mixed-mode oscillations in a two-cell inhibitory neural network. Physica D, 2010; 239: 504–514

    Article  MathSciNet  MATH  Google Scholar 

  16. Straube R, Flockerzi D, Hauser M J B. Sub-Hopf/fold-cycle bursting and its relation to (quasi-) periodic oscillations. J Phys: Conference Series, 2006; 55: 214–231

    Article  Google Scholar 

  17. Holden L, Erneux T. Slow passage through a Hopf bifurcation: From oscillatory to steady state solutions. SIAM J Appl Math, 1993; 53: 1045–1058

    Article  MathSciNet  MATH  Google Scholar 

  18. Van der Pol B, Van der Mark J. Frequency demultiplication. Nature, 1927; 120: 363–364

    Article  Google Scholar 

  19. Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Field. New York: Springer, 1983

    Google Scholar 

  20. Benoit E, Callot J L, Diener F, et al. Chasse au canard. Collect Math, 1981; 32: 37–119

    MathSciNet  MATH  Google Scholar 

  21. Krupa M, Szmolyan P. Relaxation oscillations and canard explosion. J Differ Equations, 2001; 174: 312–368

    Article  MathSciNet  MATH  Google Scholar 

  22. Krupa M, Popović N, Kopell N. Mixed-mode oscillations in three time-scale systems: A prototypical example. SIAM J Appl Dyna Syst, 2008; 7: 361–420

    Article  MATH  Google Scholar 

  23. Bold K, Edwards C, Guckenheimer J, et al. The forced Van der Pol equation II: Canards in the reduced system. SIAM J Appl Dyna Syst, 2003; 2: 570–608

    Article  MathSciNet  MATH  Google Scholar 

  24. Rinzel J. Bursting oscillation in an excitable membrane model. In: Sleeman B D, Jarvis R J, eds. Ordinary and Partial Differential Equations. Berlin: Springer-Verlag, 1985; 304–316

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QinSheng Bi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Bi, Q. Complex bursting patterns in Van der Pol system with two slowly changing external forcings. Sci. China Technol. Sci. 55, 702–708 (2012). https://doi.org/10.1007/s11431-011-4655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4655-y

Keywords

Navigation