Skip to main content
Log in

Milling stability analysis using the spectral method

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This paper focuses on the development of an efficient semi-analytical solution of chatter stability in milling based on the spectral method for integral equations. The time-periodic dynamics of the milling process taking the regenerative effect into account is formulated as a delayed differential equation with time-periodic coefficients, and then reformulated as a form of integral equation. On the basis of one tooth period being divided into a series of subintervals, the barycentric Lagrange interpolation polynomials are employed to approximate the state term and the delay term in the integral equation, respectively, while the Gaussian quadrature method is utilized to approximate the integral term. Thereafter, the Floquet transition matrix within the tooth period is constructed to predict the chatter stability according to Floquet theory. Experimental-validated one-degree-of-freedom and two-degree-of-freedom milling examples are used to verify the proposed algorithm, and compared with existing algorithms, it has the advantages of high rate of convergence and high computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Budak E. Analytical models for high performance milling. Part I: Cutting forces, structural deformations and tolerance integrity. Int J Mach Tools Manuf, 2006, 46(12–13): 1478–1488

    Article  Google Scholar 

  2. Budak E. Analytical models for high performance milling. Part II: Process dynamics and stability. Int J Mach Tools Manuf, 2006, 46(12–13): 1489v1499

    Google Scholar 

  3. Altintas Y, Merdol S D. Virtual high performance milling. CIRP Ann-Manuf Technol, 2007, 56(1): 81–84

    Article  Google Scholar 

  4. Wiercigroch M, Budak E. Sources of nonlinearities, chatter generation and suppression in metal cutting. Philos Trans R Soc A-Math Phys Eng Sci, 2001, 359(1781): 663–693

    Article  MATH  Google Scholar 

  5. Altintas Y. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and Cnc Design. Cambridge: Cambridge University Press, 2000

    Google Scholar 

  6. Altintas Y, Weck M. Chatter stability of metal cutting and grinding. CIRP Ann-Manuf Technol, 2004, 53(2): 619–642

    Article  Google Scholar 

  7. Altintas Y, Stépán G, Merdol D, et al. Chatter stability of milling in frequency and discrete time domain. CIRP J Manuf Sci Technol, 2008, 1(1): 35–44

    Article  Google Scholar 

  8. Tlusty J, Ismail F. Basic non-linearity in machining chatter. CIRP Ann-Manuf Technol, 1981, 30(1): 299–304

    Article  Google Scholar 

  9. Smith S, Tlusty J. Efficient simulation programs for chatter in milling. CIRP Ann-Manuf Technol, 1993, 42(1): 463–466

    Article  Google Scholar 

  10. Campomanes M L, Altintas Y. An improved time domain simulation for dynamic milling at small radial immersions. J Manuf Sci Eng-Trans ASME, 2003, 125(3): 416–422

    Article  Google Scholar 

  11. Li Z, Liu Q. Solution and analysis of chatter stability for end milling in the time-domain. Chin J Aeronaut, 2008, 21(2): 169–178

    Article  Google Scholar 

  12. Altintas Y, Budak E. Analytical prediction of stability lobes in milling. CIRP Ann-Manuf Technol, 1995, 44(1): 357–362

    Article  Google Scholar 

  13. Budak E, Altintas Y. Analytical prediction of chatter stability in milling-Part I: General formulation. J Dyn Syst Meas Control-Trans ASME, 1998, 120(1): 22–30

    Article  Google Scholar 

  14. Merdol S D, Altintas Y. Multi frequency solution of chatter stability for low immersion milling. J Manuf Sci Eng-Trans ASME, 2004, 126(3): 459–466

    Article  Google Scholar 

  15. Altintas Y. Analytical prediction of three dimensional chatter stability in milling. JSME Int J Ser C-Mech Syst Mach Elem Manuf, 2001, 44(3): 717–723

    Article  MathSciNet  Google Scholar 

  16. Ko J H, Altintas Y. Dynamics and stability of plunge milling operations. J Manuf Sci Eng-Trans ASME, 2007, 129(1): 32–40

    Article  Google Scholar 

  17. Kardes N, Altintas Y. Mechanics and dynamics of the circular milling process. J Manuf Sci Eng-Trans ASME, 2007, 129(1): 21–31

    Article  Google Scholar 

  18. Ozturk E, Budak E. Dynamics and stability of five-axis ball-end milling. J Manuf Sci Eng-Trans ASME, 2010, 132(2): 021003

    Article  Google Scholar 

  19. Bayly P V, Halley J E, Mann B P, et al. Stability of interrupted cutting by temporal finite element analysis. J Manuf Sci Eng-Trans ASME, 2003, 125(2): 220–225

    Article  Google Scholar 

  20. Mann B P, Bayly P V, Davies M A, et al. Limit cycles, bifurcations, and accuracy of the milling process. J Sound Vibr, 2004, 277(1–2): 31–48

    Article  Google Scholar 

  21. Mann B P, Young K A, Schmitz T L, et al. Simultaneous stability and surface location error predictions in milling. J Manuf Sci Eng-Trans ASME, 2005, 127(3): 446–453

    Article  Google Scholar 

  22. Mann B P, Edes B T, Easley S J, et al. Chatter vibration and surface location error prediction for helical end mills. Int J Mach Tools Manuf, 2008, 48(3–4): 350–361

    Article  Google Scholar 

  23. Insperger T, Stépán G. Semi-discretization method for delayed systems. Int J Numer Methods Eng, 2002, 55(5): 503–518

    Article  MATH  Google Scholar 

  24. Insperger T, Stépán G. Updated semi-discretization method for periodic delay-differential equations with discrete delay. Int J Numer Methods Eng, 2004, 61(1): 117–141

    Article  MATH  Google Scholar 

  25. Insperger T, Stépán G, Turi J. On the higher-order semi-discretizations for periodic delayed systems. J Sound Vibr, 2008, 313(1–2): 334–341

    Article  Google Scholar 

  26. Insperger T, Mann B P, Stepan G, et al. Stability of up-milling and down-milling, Part 1: Alternative analytical methods. Int J Mach Tools Manuf, 2003, 43(1): 25–34

    Article  Google Scholar 

  27. Mann B P, Insperger T, Bayly P V, et al. Stability of up-milling and down-milling, Part 2: Experimental verification. Int J Mach Tools Manuf, 2003, 43(1): 35–40

    Article  Google Scholar 

  28. Long X H, Balachandran B, Mann B P. Dynamics of milling processes with variable time delays. Nonlinear Dyn, 2007, 47(1–3): 49–63

    MATH  Google Scholar 

  29. Long X H, Balachandran B. Stability analysis for milling process. Nonlinear Dyn, 2007, 49(3): 349–359

    Article  MATH  Google Scholar 

  30. Sims N D, Mann B, Huyanan S. Analytical prediction of chatter stability for variable pitch and variable helix milling tools. J Sound Vibr, 2008, 317(3-5): 664–686

    Article  Google Scholar 

  31. Seguy S, Insperger T, Arnaud L, et al. On the stability of high-speed milling with spindle speed variation. Int J Adv Manuf Technol, 2010, 48(9–12): 883–895

    Article  Google Scholar 

  32. Wan M, Zhang W H, Dang J W, et al. A unified stability prediction method for milling process with multiple delays. Int J Mach Tools Manuf, 2010, 50(1): 29–41

    Article  Google Scholar 

  33. Olgac N, Sipahi R. A unique methodology for chatter stability mapping in simultaneous machining. J Manuf Sci Eng-Trans ASME, 2005, 127(4): 791–800

    Article  Google Scholar 

  34. Butcher E A, Ma H, Bueler E, et al. Stability of linear time-periodic delay-differential equations via chebyshev polynomials. Int J Numer Methods Eng, 2004, 59(7): 895–922

    Article  MathSciNet  MATH  Google Scholar 

  35. Butcher E A, Bobrenkov O A, Bueler E, et al. Analysis of milling stability by the chebyshev collocation method: Algorithm and optimal stable immersion levels. J Computat Nonlinear Dyn, 2009, 4(3): 031003

    Article  Google Scholar 

  36. Ding Y, Zhu L, Zhang X, et al. A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf, 2010, 50(5): 502–509

    Article  Google Scholar 

  37. Ding Y, Zhu L, Zhang X, et al. On a Numerical method for simultaneous prediction of stability and surface location error in low radial immersion milling. J Dyn Syst Meas Control-Trans ASME, 2011, 133(2): 024503

    Article  Google Scholar 

  38. Insperger T. Full-discretization and semi-discretization for milling stability prediction: Some comments. Int J Mach Tools Manuf, 2010, 50(7): 658–662

    Article  Google Scholar 

  39. Ding Y, Zhu L, Zhang X, et al. Numerical integration method for prediction of milling stability. J Manuf Sci Eng-Trans ASME, 2011, 133(3): 031005

    Article  Google Scholar 

  40. Ding Y, Zhu L, Zhang X, et al. Spectral method for prediction of chatter stability in low radial immersion milling. Proceedings-IEEE International Conference on Robotics and Automation, 2011, Shanghai, China. 4359–4363

  41. Tang T, Xu X, Cheng J. On spectral methods for volterra integral equations and the convergence analysis. J Comput Math, 2008, 26(6): 825–837

    MathSciNet  MATH  Google Scholar 

  42. Ali I, Brunner H, Tang T. Spectral methods for pantograph-type differential and integral equations with multiple delays. Frontiers Math China, 2009, 4(1): 49–61

    Article  MathSciNet  MATH  Google Scholar 

  43. Khasawneh F A, Mann B P. A Spectral Element Approach for the Stability of Delay Systems. Int J Numer Methods Eng, 2011, 87(6): 566–592

    Article  Google Scholar 

  44. Trefethen L N. Spectral Methods in Matlab, Society for Industrial and Applied Mathematics, Philadelphia, 2000

  45. Yang W Y, Cao W, Chung T S, et al. Applied Numerical Methods Using Matlab. Hoboken, N.J.: Wiley-Interscience, 2005

    Book  Google Scholar 

  46. Berrut J P, Trefethen L N. Barycentric lagrange interpolation. SIAM Rev, 2004, 46(3): 501–517

    Article  MathSciNet  MATH  Google Scholar 

  47. Farkas M. Periodic Motions. New York: Springer-Verlag, 1994

    MATH  Google Scholar 

  48. Henninger C, Eberhard P. Improving the computational efficiency and accuracy of the semi-discretization method for periodic delay-differential equations. Eur J Mech A-Solids, 2008, 27(6): 975–985

    Article  MATH  Google Scholar 

  49. Zhu L M, Ding H, Xiong Y L. Third-order point contact approach for five-axis sculptured surface machining using non-ball-end tools (I): Third-order approximation of tool envelope surface. Sci China Tech Sci, 2010, 53(7): 1904–1912

    Article  MATH  Google Scholar 

  50. Zhu L M, Ding H, Xiong Y L. Third-order point contact approach for five-axis sculptured surface machining using non-ball-end tools (II): Tool positioning strategy. Sci China Tech Sci, 2010, 53(8): 2190–2197

    Article  MATH  Google Scholar 

  51. Ye T, Xiong C H, Xiong Y L, et al. Kinematics constrained five-axis tool path planning for high material removal rate. Sci China Tech Sci, 2011, 54: 3155–3165

    Google Scholar 

  52. Mao X Y, Liu H Q, Li B. Time-frequency analysis and the detecting method research on the milling force token signal in the spindle current signal. Sci China Ser E-Tech Sci, 2009, 52: 2810–2813

    Article  Google Scholar 

  53. Liu H Q, Chen Q H, Li B, et al. On-line chatter detection using servo motor current signal in turning. Sci China Tech Sci, 2011, 54: 3119–3129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Zhu, L., Zhang, X. et al. Milling stability analysis using the spectral method. Sci. China Technol. Sci. 54, 3130–3136 (2011). https://doi.org/10.1007/s11431-011-4611-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4611-x

Keywords

Navigation