Skip to main content
Log in

Application of Bayesian approach to hydrological frequency analysis

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

An existing Bayesian flood frequency analysis method is applied to quantile estimation for Pearson type three (P-III) probability distribution. The method couples prior and sample information under the framework of Bayesian formula, and the Markov Chain Monte Carlo (MCMC) sampling approach is used to estimate posterior distributions of parameters. Different from the original sampling algorithm (i.e. the important sampling) used in the existing approach, we use the adaptive metropolis (AM) sampling technique to generate a large number of parameter sets from Bayesian parameter posterior distributions in this paper. Consequently, the sampling distributions for quantiles or the hydrological design values are constructed. The sampling distributions of quantiles are estimated as the Bayesian method can provide not only various kinds of point estimators for quantiles, e.g. the expectation estimator, but also quantitative evaluation on uncertainties of these point estimators. Therefore, the Bayesian method brings more useful information to hydrological frequency analysis. As an example, the flood extreme sample series at a gauge are used to demonstrate the procedure of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stedinger J R, Vogel R M, Foufula-Georgiou E. Frequency analysis of extreme events. In: Maidment R, ed., Handbook of Hydrology. New York: McGraw-Hill, 1992, 18.1–18.66

    Google Scholar 

  2. Laio F, Di Baldassarre G, Montanari A. Model selection techniques for the frequency analysis of hydrological extremes. Water Resour Res, 2009, 45, W07416, doi:10.1029/2007WR006666

    Article  Google Scholar 

  3. Wallis J R, Matalas N C, Slack J R. Just a moment! Water Resour Res, 1974, 10(2): 211–221

    Article  Google Scholar 

  4. Griffis V W, Stedinger J R. Log-Pearson type 3 distribution and its application in flood frequency analysis. II: Parameter estimation methods. J Hydrol Eng, 2007, 12(5): 492–500

    Article  Google Scholar 

  5. Landwehr J M, Matalas N C, Wallias J R. Probanility weighted moments compared with some traditional techniques in eatimating Gumbel parameters and quantiles. Water Resour Res, 1979, 15(5): 1055–1064

    Article  Google Scholar 

  6. Greenwood J A, Landwehr J M, Matalas N C, et al. Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resour Res, 1979, 15(5), 1049–1054, doi: 10.1029/WR015i005p01049

    Article  Google Scholar 

  7. Landwehr J M, Matalas N C, Wallias J R. Estimation of parameters and quantiles of Wakeby distributions. Water Resour Res, 1979, 15(6): 1361–1379

    Article  Google Scholar 

  8. Greis N P, Wood E F. Regional flood frequency estimation and network design. Water Resour Res, 1981, 17(4): 1167–1177

    Article  Google Scholar 

  9. Hosking J R M, Wallis J R, Wood E F. Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics, 1985, 27(3): 251–261

    Article  MathSciNet  Google Scholar 

  10. Hosking J R M, Wallis J R. The value of historical data in flood frequency analysis. Water Resour Res, 1986, 22(11): 1606–1612

    Article  Google Scholar 

  11. Song D, Ding J. The application of probability weighted moments in estimating the parameters of the Pearson type three distribution. J Hydrol, 1988, 101(1–4): 47–61

    Article  Google Scholar 

  12. Ding J, Yang R. The determination of probability weighted moments with the incorporation of extraordinary values into sample data and their application to estimating parameters for the Pearson type three distribution. J Hydrol, 1988, 101(1–4): 63–81

    Google Scholar 

  13. Whalen T M, Savage G T, Jeong G D. The method of self-determined probability weighted moments revisited. J Hydrol, 2002, 268(1–4): 177–191

    Article  Google Scholar 

  14. Hosking J R M. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J Roy Stat Soc B, 1990, 52(1): 105–124

    MATH  MathSciNet  Google Scholar 

  15. Hosking J R M, Wallis J R. Regional Frequency Analysis. Cambridge: Cambridge University Press, 1997. 14–141

    Book  Google Scholar 

  16. Hosking J R M. On the characterization of distributions by their L-moments. J Statist Plan Infer, 2006, 136(1): 193–198

    Article  MATH  MathSciNet  Google Scholar 

  17. Peel M C, Wang Q J, Vogel R M, et al. The utility of L-moment ratio diagrams for selecting a regional probability distribution. Hydrolog Sci J, 2001, 46(1): 147–156

    Article  Google Scholar 

  18. Abramowitz M, Stegun I A. Handbook of mathematical functions, Appl Math Ser 55, National Bureau of Standards, U.S. Government Printing Office, Washington, D.C., 1964

    Google Scholar 

  19. Vicens G J, Rodriguez-Iturbe I, Schaake J C Jr. A Bayesian framework for the use of regional information in hydrology. Water Resour Res, 1975, 11(3): 405–414

    Article  Google Scholar 

  20. Stedinger J R. Design events with specified flood risk. Water Resour Res, 1983, 19(2): 511–522

    Article  Google Scholar 

  21. Wood E F, Rodriguez-Iturbe I. Bayesian inference and decision making for extreme hydrologic events. Water Resour Res, 1975, 11(4): 533–542

    Article  Google Scholar 

  22. Wood E F, Rodriguez-Iturbe I. A Bayesian approach to analyzing uncertainty among flood frequency models. Water Resour Res, 1975, 11(6): 839–843

    Article  Google Scholar 

  23. Tang W H. Bayesian frequency analysis. J Hydraul Div-ASCE, 1980, 106: 1203–1218

    Google Scholar 

  24. Van Gelder P H A J M, Van Noortwijk J M, Duits M T. Selection of probability distribution with a case study on extreme Oder River discharges. In: The Tenth European Conference on Safety and Reliability, Munich-Garching, Germany, 1999. 1475–1480

  25. Kuczera G. Combining site-specific and regional information: An empirical Bayes approach. Water Resour Res, 1982, 18(2): 306–314

    Article  Google Scholar 

  26. Kuczera G. Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference. Water Resour Res, 1999, 35(5): 1551–1557

    Article  Google Scholar 

  27. O’Connell D R H, Ostenaa D A, Levish D R, et al. Bayesian flood frequency analysis with paleohydrologic bound data. Water Resour Res, 2002, 38(5), 1058, doi:10.1029/2000WR000028

    Article  Google Scholar 

  28. Reis D S Jr, Stedinger J R, Martins E S. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resour Res, 2005, 41, W10419, doi: 10.1029/2004WR003445

    Article  Google Scholar 

  29. Reis D S Jr, Stedinger J R. Bayesian MCMC flood frequency analysis with historical information. J Hydrol, 2005, 313(1–2): 97–116

    Google Scholar 

  30. Seidou O, Ouarda T B M J, Barbet M, et al. A parametric Bayesian combination of local and regional information in flood frequency analysis. Water Resour Res, 2006, 42, W11408, doi:10.1029/2005WR004397

    Article  Google Scholar 

  31. Ribatet M, Sauquet E, Gresillon J M, et al. A regional Bayesian POT model for flood frequency analysis. Stoch Environ Res Risk Assess, 2007, 21(4): 327–339

    Article  MATH  MathSciNet  Google Scholar 

  32. Ribatet M, Sauquet E, Gresillon J M, et al. Usefulness of the reversible jump Markov Chain Monte Carlo model in regional flood frequency analysis. Water Resour Res, 2007, 43, W08403, doi: 10.1029/2006WR005525

    Article  Google Scholar 

  33. Micevski T, Kuczera G. Combining site and regional flood information using a Bayesian Monte Carlo approach. Water Resour Res, 2009, 45, W04405, doi:10.1029/2008WR007173

    Article  Google Scholar 

  34. Blasone R S, Vrugt J A, Madsen H, et al. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv Water Resour, 2008, 31(4): 630–648

    Article  Google Scholar 

  35. Gallagher K, Charvin K, Nielsen S, et al. Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for earth science problems. Mar Petrol Geol, 2009, 26(4): 525–535

    Article  Google Scholar 

  36. Haario H, Saksman E, Tamminem J. An adaptive metropolis algorithm. Bernoulli, 2001, 7(2): 223–242

    Article  MATH  MathSciNet  Google Scholar 

  37. Haario H, Laine M, Mira A, et al. DRAM: Efficient adaptive MCMC. Stat Comput, 2006, 16(4): 339–354

    Article  MathSciNet  Google Scholar 

  38. Gelman A, Rubin D B. Inference from iterative simulation using multiple sequences. Stat Sci, 1992, 7(4): 457–511

    Article  Google Scholar 

  39. Benjiamin J R, Cornell C A. Probability, Statistics and Decision for Civil Engineers. New York: McGraw-Hill, 1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongMin Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Z., Li, B., Yu, Z. et al. Application of Bayesian approach to hydrological frequency analysis. Sci. China Technol. Sci. 54, 1183–1192 (2011). https://doi.org/10.1007/s11431-010-4229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-4229-4

Keywords

Navigation