Skip to main content
Log in

Interaction between electromagnetic waves and energetic particles by a realistic density model

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Using a realistic density model, we present a first study on the interactions between electromagnetic waves and energetic particles in the inner magnetosphere. Numerical calculations show that as the latitude λ increases, the number density n e increases, and resonant frequency range moves to lower pitch angles. During L-mode/electron and L-mode/proton interactions, the pitch angle diffusion dominates over the momentum diffusion. This indicates that L-mode waves are primarily responsible for pitch angle scattering. For R-mode/electron interaction, the momentum diffusion is found to be comparable to the pitch angle diffusion, implying that R-mode waves can play an important role in both pitch angle scattering and stochastic acceleration of electrons. For R-mode/proton interaction, diffusion coefficients locate primarily below pitch angle 60° and increase as kinetic energy increases, suggesting that R-mode waves have potential for pitch angle scattering of highly energetic (∼1 MeV) protons but cannot efficiently accelerate protons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horne R B, Thorne R M, Shprits Y Y, et al. Wave acceleration of electrons in the Van Allen radiation belts. Nature, 2005, 437: 227–230

    Article  Google Scholar 

  2. Chen Y, Reeves G D, Friedel R H W. The energization of relativistic electrons in the outer Van Allen radiation belt. Nature Phys, 2007, 3: 614–617

    Article  Google Scholar 

  3. Xiao F L, Zhou Q H, Zheng H N, et al. Relativistic diffusion coefficients for superluminous (auroral kilometric radiation) wave mold in space plasmas. J Geophys Res, 2006, 111: A08208

    Article  Google Scholar 

  4. Xiao F L, Thorne R M, Summers D. Higher-order gyroresonant acceleration of electrons by superluminous (AKR) wave-moldes. Planet Space Sci, 2007, 55: 1257–1271

    Article  Google Scholar 

  5. Xiao F L, Chen L J, Zheng H N, et al. A parametric ray tracing study of superluminous (auroral kilometric radiation) wave modes. J Geophys Res, 2007, 112: A10214

    Article  Google Scholar 

  6. Baker D N, Blake J B, Klebesadel R W, et al. Highly relativistic electrons in the Earth’s outer magnetosphere: Lifetimes and temporal history 1979–1984. J Geophys Res, 1986, 91: 4265–4274

    Article  Google Scholar 

  7. Li X. Variations of 0.7-0.6 MeV electrons at geosynchronous orbit as a function of solar wind. Space Weather, 2004, 2: S03006

    Article  Google Scholar 

  8. Li L, Cao J, Zhou G. Combined acceleration of electrons by whistler-mode and compressional ULF turbulences near the geosynchronous orbit. J Geophys Res, 2005,110: A03203

    Article  Google Scholar 

  9. Zong Q-G, Zhou X-Z, Li X, et al. Ultralow frequency modulation of particles in the dayside magnetosphere. Geophys Res Lett, 2007, 34: L12105

    Article  Google Scholar 

  10. Zong Q-G, Wang Y F, Yang B, et al. Recent progress on ULF wave and its interactions with energetic particles in the inner magnetosphere. Sci China Ser E-Tech Sci, 2008, 51: 1620–1625

    Article  Google Scholar 

  11. Yang B, Fu S, Zong Q-G, et al. Numerical study on ULF waves in a dipole field excited by sudden impulse. Sci China Ser E-Tech Sci, 2008, 51: 1665–1669

    Article  MATH  Google Scholar 

  12. Wang Y, Fu S, Zong Q-G, et al. Multi-spacecraft observations of ULF waves during the recovery phase of magnetic storm on October 30. Sci China Ser E-Tech Sci, 2008, 51: 1772–1775

    Article  Google Scholar 

  13. Zong Q-G, Zhou X-Z, Wang Y F, et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res, 2009, 114: A10204.

    Article  Google Scholar 

  14. Zong Q-G, Hao Y Q, Wang Y F. Ultra low frequency waves impact on radiation belt energetic particles. Sci China Ser E-Tech Sci, 2009, 52: 3698–3704

    Article  Google Scholar 

  15. Cornwall, J M, Coroniti F V, Thorne R M. Turbulent loss of ring current protons. J Geophys Res, 1970, 75: 4699–4708

    Article  Google Scholar 

  16. Xiao F L, Chen L X, He H Y, et al. Second-order resonant interaction of ring current protons with whistler-mode waves. Chinese Phy Lett, 2008, 25: 336–339

    Article  Google Scholar 

  17. He H Y, Chen L X, Li J F. Characteristics of wave-particle interaction in a hydrogen plasma. Chin Phys Lett, 2008, 25: 3511–3514

    Article  Google Scholar 

  18. Jordanova V K, Kozyra J U, Nagy A F. Effects of heavy ions on the quasi-linear diffusion coefficients from resonant interactions with EMIC waves. J Geophys Res, 1996, 101: 19771–19778

    Article  Google Scholar 

  19. Sheeley, B W, Moldwin M B, Rassoul H K. An empirical plasmasphere and trough density model: CRRES observations. J Geophys Res, 2001, 106(A11): 25631–25641

    Article  Google Scholar 

  20. Summers D, Thorne R M. Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J Geophys Res, 2003, 108(A4): 1143–1154

    Article  Google Scholar 

  21. Denton R E, Goldstein J, Menietti J D, et al. Magnetospheric electron density model inferred from Polar plasma wave data. J Geophys Res, 2002, 107(A11): 1386–1393

    Article  Google Scholar 

  22. Denton R E, Menietti J D, Goldstein J, et al. Electron density in the magnetosphere. J Geophys Res, 2004, 109: A09215

    Article  Google Scholar 

  23. Glauert S A, Horne R B. Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J Geophys Res, 2005, 110: A04206

    Article  Google Scholar 

  24. Lyons L R, Thorne R M, Kennel C F. Parasitic pitch angle diffusion of radiation belt particles by ion cyclotron waves. J Geophys Res, 1972, 77: 3455–3465

    Article  Google Scholar 

  25. Summers D. Quasi-linear diffusion coefficients for field-aligned electromagnetic waves with applications to the magnetosphere. J Geophys Res, 2005, 110: A08213

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuLiang Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Chen, L., Xiao, F. et al. Interaction between electromagnetic waves and energetic particles by a realistic density model. Sci. China Technol. Sci. 53, 2552–2557 (2010). https://doi.org/10.1007/s11431-010-4072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-4072-7

Keywords

Navigation