Skip to main content
Log in

Dynamic evolution of outer radiation belt electrons driven by superluminous R-X mode waves

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

We present initial results on the temporal evolution of the phase space density (PSD) of the outer radiation belt energetic electrons driven by the superluminous R-X mode waves. We calculate diffusion rates in pitch angle and momentum assuming the standard Gaussian distributions in both wave frequency and wave normal angle at the location L=6.5. We solve a 2D momentum-pitch-angle Fokker-Planck equation using those diffusion rates as inputs. Numerical results show that R-X mode can produce significant acceleration of relativistic electrons around geostationary orbit, supporting previous findings that superluminous waves potentially contribute to dramatic variation in the outer radiation belt electron dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker D N, Blake J B, Klebesadel R W, et al. Highly relativistic electrons in the Earth’s outer magnetosphere: Lifetimes and temporal history 1979–1984. J Geophys Res, 1986, 91: 4265–4274

    Article  Google Scholar 

  2. Li X. Variations of 0.7–0.6 MeV electrons at geosynchronous orbit as a function of solar wind. Space Weather, 2004, 2: S03006

    Article  Google Scholar 

  3. Sarris T, Li X, Temerin M. Simulating radial diffusion of energetic (MeV) electrons through a model of fluctuating electric and magnetic fields. Ann Geophys, 2006, 24: 1–16

    Article  Google Scholar 

  4. Zong Q-G, Zhou X-Z, Li X, et al. Ultralow frequency modulation of particles particles in the dayside magnetosphere. Geophys Res Lett, 2007, 34: L12105

    Article  Google Scholar 

  5. Zong Q-G, Wang Y F, Yang B, et al. Recent progress on ULF wave and its interactions with energetic particles in the inner magnetosphere. Sci China Ser E-Tech Sci, 2008, 51: 1620–1625

    Article  Google Scholar 

  6. Yang B, Fu S, Zong Q-G, et al. Numerical study on ULF waves in a dipole field excited by sudden impulse. Sci China Ser E-Tech Sci, 2008, 51: 1665–1669

    Article  MATH  Google Scholar 

  7. Wang Y, Fu S, Zong Q-G, et al. Multi-spacecraft observations of ULF waves during the recovery phase of magnetic storm on October 30, 2003. Sci China Ser E-Tech Sci, 2008, 51: 1772–1776

    Article  Google Scholar 

  8. Zong Q-G, Zhou X-Z, Wang Y-F et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res, 2009, 114: A10204

    Article  Google Scholar 

  9. Zong Q-G, Hao Y Q Wang Y F. Ultra low frequency waves impact on radiation belt energetic particles. Sci China Ser E-Tech Sci, 2009, 52: 3698–3704

    Article  Google Scholar 

  10. Brautigam, D-H, Albert J-M. Radial diffusion analysis of outer radiation belt electrons during the october 9, 1990, magnetic storm. J Geophys Res, 2000, 105: 291–309

    Article  Google Scholar 

  11. Horne R B, Thorne R M, Shprits Y Y, et al. Wave acceleration of electrons in the Van Allen radiation belts. Nature, 2005, 437: 227–230

    Article  Google Scholar 

  12. Li L, Cao J, Zhou G. Combined acceleration of electrons by whistler-mode and compressional ULF turbulences near the geosynchronous orbit. J Geophys Res, 2005, 110: A03203

    Article  Google Scholar 

  13. Chen Y, Reeves G D, and Friedel R H W. The energization of relativistic electrons in the outer Van Allen radiation belt. Nature Phys, 2007, 3: 614–617

    Article  Google Scholar 

  14. Wu C-S, Lee L-C. A theory of the terrestrial kilometric radiation. Astrophys J, 1979, 230: 621–625

    Article  Google Scholar 

  15. Calvert W. The auroral plasma cavity. Geophys Res Lett, 1981, 8: 919

    Article  Google Scholar 

  16. Gurnett D-A, Shawhan S-D, Shaw R-R. Auroral hiss, z mode radiation and auroral kilometric radiation in the polar magnetosphere: DE1 observations. J Geophys Res, 1983, 88: 329–340

    Article  Google Scholar 

  17. Hashimoto K, Kudo S, Matsumoto H. Source of auroral myriametric radiation observed with Geotail. J Geophys Res, 1998, 103: 23475–23483

    Article  Google Scholar 

  18. Summers D, Thorne R-M, Xiao F L. Gyroresonant acceleration of electrons in the magnetosphere by superluminous electromagnetic waves. J Geophys Res, 2001, 106: 10853–10868

    Article  Google Scholar 

  19. Xiao F L, Thorne R M, Summers D. Higher-order gyroresonant acceleration of electrons by superluminous (AKR) wave-moldes. Planet Space Sci, 2007, 55: 1257–1271

    Article  Google Scholar 

  20. Xiao F L, He H Y, Zhou Q H, et al. Relativistic diffusion coefficients for superluminous (auroral kilometric radiation) wave mold in space plasmas. J Geophys Res, 2006, 111: A11201

    Article  Google Scholar 

  21. Hashimoto K. A reconciliation of propagation modes of auroral kilometric radiation. J Geophys Res, 1984, 89: 7459–7468

    Article  Google Scholar 

  22. Calvert W, Hashimoto K. The magnetoionic modes and propagation properties of auroral radio emissions. J Geophys Res, 1990, 95: 3943–3952

    Article  Google Scholar 

  23. Xiao F L, Chen L J, Zheng H N, et al. A parametric ray tracing study of superluminous (auroral kilometric radiation) wave modes. J Geophys Res, 2007, 112: A10214

    Article  Google Scholar 

  24. Stix T-H. Waves in Plasmas. American Institute of Physics, New York, 1992. 36

    Google Scholar 

  25. Lyons L-R. Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves. J Plasma Phys, 1974, 12: 417–431

    Article  Google Scholar 

  26. Glauert S A, Horne R B. Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J Geophys Res, 2005, 110: A04206

    Article  Google Scholar 

  27. Gallagher D-L, Craven P-D, Comfort R-H. Global core plasma model. J Geophys Res, 2000, 105: 18819–18833

    Article  Google Scholar 

  28. Xiao F L, Shen C L, Wang Y M, et al. Energetic electron distributions fitted with a relativistic kappa-type function at geosynchronous orbit. J Geophys Res, 2008, 113: A05203

    Article  Google Scholar 

  29. Li W, Shprits Y Y, Thorne R M. Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms. J Geophys Res, 2007, 112: A10220

    Article  Google Scholar 

  30. Hanasz J, Panchenko M, de Feraudy H, et al. Occurrence distributions of the auroral kilometric radiation ordinary and extraordinary wave modes. J Geophys Res, 2003, 108: 1408–1418

    Article  Google Scholar 

  31. Xiao F L, Su Z P, Zheng H N, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process. J Geophys Res, 2009, 114: A032013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuLiang Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, F., Chen, L., He, Y. et al. Dynamic evolution of outer radiation belt electrons driven by superluminous R-X mode waves. Sci. China Technol. Sci. 53, 2734–2738 (2010). https://doi.org/10.1007/s11431-010-4071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-4071-8

Keywords

Navigation