Skip to main content
Log in

Recent progresses in application of functionalized graphene sheets

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Graphene, a rapidly rising star on the horizon of material science, has a unique two-dimensional nanostructure as well as exceptional mechanical and electronic properties. Despite its short history, graphene has exhibited great potential in various applications. In order to implement the potential applications, functionalization of graphene is necessary to obtain uniform dispersions for good processability. Two kinds are dominant for functionalization such as covalent and non-covalent methods. The former is based on the formation of covalent bonds, and the latter the interaction among molecules. In this review, we summarized briefly the recent progress of functionalized graphene sheets (FGs) in different fields, such as optoelectronic materials, sensors, energy storage materials, catalytic, reinforcing components and so on, and also prospected the development trend of FGs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  Google Scholar 

  2. Geim A K. Graphene: Status and prospects. Science, 2009, 324: 1530–1534

    Article  Google Scholar 

  3. Rao C N R, Biswas K, Subrahmanyam K S, et al. Graphene, the new nanocarbon. J Mater Chem, 2009, 19: 2457–2469

    Article  Google Scholar 

  4. Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109–162

    Article  Google Scholar 

  5. Lu X, Yu M, Huang H, et al. Tailoring graphite with the goal of achieving single sheets. Nanotechnol, 1999, 10: 269–272

    Article  Google Scholar 

  6. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  Google Scholar 

  7. Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors. Nano Lett, 2008, 8: 3498–3502

    Article  Google Scholar 

  8. Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321: 385–388

    Article  Google Scholar 

  9. Steurer P, Wissert R, Thomann R, et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun, 2009, 30: 316–327

    Article  Google Scholar 

  10. Novoselov K S, Morozov S V, Mohinddin T M G, et al. Electronic properties of graphene. Phys Stat Sol(b), 2007, 244: 4106–4111

    Article  Google Scholar 

  11. Igor A L, Yanchuk, Yakov K. Dirac and normal fermions in graphite and graphene: Implications of the quantum hall effect. Phys Rev Lett, 2006, 97: 256801

    Article  Google Scholar 

  12. Burghard M, Klauk H, Kern K. Carbon-based field-effect transistors for nanoelectronics. Adv Mater, 2009, 21: 2586–2600

    Article  Google Scholar 

  13. Alwarappan S, Erdem A, Liu C, et al. Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C, 2009, 113: 8853–8857

    Article  Google Scholar 

  14. Guo P, Song H, Chen X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun, 2009, 11: 1320–1324

    Article  Google Scholar 

  15. Park S, Ruoff R S. Chemical methods for the production of graphenes. Nat Nanotech, 2009, 4: 217–224

    Article  Google Scholar 

  16. Boukhvalov D W, Katsnelson M I. Chemical functionalization of graphene with defects. Nano Lett, 2008, 8: 4373–4379

    Article  Google Scholar 

  17. Yang H, Shan C, Li F, et al. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun, 2009, 26: 3880–3882

    Article  Google Scholar 

  18. Wang G, Shen X, Wang B, et al. Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon, 2009, 47: 1359–1364

    Article  MathSciNet  Google Scholar 

  19. Park S G, An J, Piner R D, et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater, 2008, 20: 6592–6594

    Article  Google Scholar 

  20. Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc, 2008, 130: 5856–5857

    Article  Google Scholar 

  21. Xu Y, Wang Y, Liang J, et al. A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res, 2009, 2: 343–348

    Article  Google Scholar 

  22. Reina A, Jia X T, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett, 2009, 9: 30–35

    Article  Google Scholar 

  23. Dato A, Radmilovic V, Lee Z, et al. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett, 2008, 8: 2012–2016

    Article  Google Scholar 

  24. Wu J, Becerril H A, Bao Z, et al. Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett, 2008, 92: 263302

    Article  Google Scholar 

  25. Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 2008, 8: 323–327

    Article  Google Scholar 

  26. Wang Y, Chen X, Zhong Y, et al. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl Phys Lett, 2009, 95: 063302

    Article  Google Scholar 

  27. Hong W, Xu Y, Lu G, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun, 2008, (10): 1555–1558

    Article  Google Scholar 

  28. Liu Q, Liu Z, Zhang X, et al. Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater, 2009, 19: 894–904

    Article  Google Scholar 

  29. Liu Z, Tian J, Guo Z, et al. Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes. Adv Mater, 2008, 20: 511–515

    Article  Google Scholar 

  30. Guo Z, Du F, Ren D M, et al. Covalently porphyrin-functionalized single-walled carbon nanotubes: A novel photoactive and optical limiting donor-acceptor nanohybrid. J Mater Chem, 2006, 16: 3021–3030

    Article  Google Scholar 

  31. Liu Z, Wang Y, Zhang X, et al. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl Phys Lett, 2009, 94: 021902

    Article  Google Scholar 

  32. Liu Z, Xu Y, Zhang X, et al. Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J Phys Chem B, 2009, 113: 9681–9686

    Article  Google Scholar 

  33. Liu Y, Zhou J, Zhang X, et al. Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon, 2009, 47: 3113–3121

    Article  Google Scholar 

  34. Crevillen A G, Pumera M, Gonzalez M C, et al. The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains. Analyst, 2009, 134: 657–662

    Article  Google Scholar 

  35. Wang Y, Li Y, Tang L, et al. Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun, 2009, 11: 889–892

    Article  Google Scholar 

  36. Lu G, Ocola L E, Chen J. Reduced graphene oxide for room-temperature gas sensors. Nanotechnol, 2009, 20: 445502

    Article  Google Scholar 

  37. Ansari S, Giannelis E P. Functionalized graphene sheet-poly (vinylidene fluoride) conductive nanocomposites. J Polym Sci B-Polym Phys, 2009, 47: 888–897

    Article  Google Scholar 

  38. Xu Y, Zhao L, Bai H, et al. Chemically converted graphene induced molecular flattening of 5, 10, 15, 20-tetrakis (1-methyl-4-pyridinio) porphyrin and its application for optical detection of cadmium(II) ions. J Am Chem Soc, 2009, 131: 13490–13497

    Article  Google Scholar 

  39. Shan C, Yang H, Han D, et al. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir, 2009, 25: 12030–12033

    Article  Google Scholar 

  40. Wang Z, Zhou X, Zhang J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C, 2009, 113: 14701–14705

    Google Scholar 

  41. Mohammad A R, Javad R, Zhou W, et al. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 2009, 3: 3884–3890

    Article  Google Scholar 

  42. Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors. Nano Lett, 2008, 8: 3498–3502

    Article  Google Scholar 

  43. Yu D, Dai L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett, 2010, 1: 467–470

    Article  Google Scholar 

  44. Gnanaraj J S, Levi M D, Levi E, et al. Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure. J Electrochem Soc, 2001, 148: 525–536

    Article  Google Scholar 

  45. Hu Y, Adelhelm P, Smarsly B M, et al. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv Funct Mater, 2007, 17: 1873–1878

    Article  Google Scholar 

  46. Chen J, Minett A I, Liu Y, et al. Direct growth of flexible carbon nanotube electrodes. Advan Mater, 2008, 20: 566–570

    Article  Google Scholar 

  47. Wang C, Li D, Too C O, et al. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater, 2009, 21: 2604–2606

    Article  Google Scholar 

  48. Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries. Advan Mater, 1998, 10: 725–763

    Article  Google Scholar 

  49. Maier J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nat Mater, 2005, 4: 805–815

    Article  Google Scholar 

  50. Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359–367

    Article  Google Scholar 

  51. Wang D, Choi D, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-Ion insertion. ACS Nano, 2009, 3: 907–914

    Article  Google Scholar 

  52. Wang D, Kou R, Choi D, et al. Ternary self-assembly of ordered metal oxide graphene nanocomposites for electrochemical energy storage. ACS Nano, 2010, 4: 1587–1595

    Article  Google Scholar 

  53. Zhang J, Sasaki K, Sutter E, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315: 220–222

    Article  Google Scholar 

  54. Shao Y, Liu J, Wang Y, et al. Novel catalyst support materials for PEM fuel cells: Current status and future prospects. J Mater Chem, 2009, 19: 46–59

    Article  Google Scholar 

  55. Kou R, Shao Y, Wang D, et al. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem Commun, 2009, 11: 954–957

    Article  Google Scholar 

  56. Yoo E J, Okata T, Akita T, et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett, 2009, 9: 2255–2259

    Article  Google Scholar 

  57. Scheuermann G M, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J Am Chem Soc, 2009, 131: 8262–8270

    Article  Google Scholar 

  58. Liu H, Gao J, Xue M, et al. Processing of graphene for electrochemical application: Noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir, 2009, 25: 12006–12010

    Article  Google Scholar 

  59. Li F, Yang H, Shan C, et al. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. J Mater Chem, 2009, 19: 4022–4025

    Article  Google Scholar 

  60. Young S, Jae R Y. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 2005, 43: 1378–1385

    Article  Google Scholar 

  61. Jonathan N C, Martin C, Rowan B, et al. High-performance nanotube-reinforced plastics: Understanding the mechanism of strength increase. Adv Funct Mater, 2004, 14: 791–798

    Article  Google Scholar 

  62. Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotech, 2008, 3: 327–331

    Article  Google Scholar 

  63. Yang H, Li F, Shan C, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem, 2009, 19: 4632–4638

    Article  Google Scholar 

  64. Fang M, Wang K, Lu H, et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem, 2009, 19: 7098–7105

    Article  Google Scholar 

  65. Lee Y R, Raghu A V, Jeong H M, et al. Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys, 2009, 210: 1247–1254

    Article  Google Scholar 

  66. Zhang H, Bao Q, Tang D, et al. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl Phys Lett, 2009, 95: 141103

    Article  Google Scholar 

  67. Herrmann I K, Grass R N, Mazunin D, et al. Synthesis and covalent surface functionalization of nonoxidic iron core-shell nanomagnets. Chem Mater, 2009, 21: 3275–3281

    Article  Google Scholar 

  68. Liang J, Wang Y, Huang Y, et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon, 2009, 47: 922–925

    Article  Google Scholar 

  69. Sint K, Wang B, Kral P. Selective ion passage through functionalized graphene nanopores. J Am Chem Soc, 2008, 130: 16448–16449

    Article  Google Scholar 

  70. Cote L J, Kim F, Huang J. Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc, 2009, 131: 1043–1049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, P., Feng, Y., Zhang, X. et al. Recent progresses in application of functionalized graphene sheets. Sci. China Technol. Sci. 53, 2311–2319 (2010). https://doi.org/10.1007/s11431-010-4050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-4050-0

Keywords

Navigation