Skip to main content

Functionalization of Graphene and Applications

  • Chapter
  • First Online:
Functionalizing Graphene and Carbon Nanotubes

Abstract

Graphene is a new member of the nanocarbon family that has revolutionized the field of materials science and has attracted much attention due to its exceptional properties. Recent progress has shown that graphene-based nanocomposites can be used in nanoelectronics, touch screens, optics, catalysis, supercapacitors, fuel cell transistors, flexible electronics, H2 storage, and polymer nanocomposites. The functionalization is a surface modification much used to reduce the cohesive force between the graphene sheets and also to manipulate the physical and chemical properties. The aim of this book was to provide a comprehensive scientific progress of graphene, containing topics such as synthesis, characterization, and application of functionalized graphene. The characterization of the functionalized graphene is extremely important for determining the physicochemical properties of the material obtained after the functionalization treatments. However, this characterization is rarely addressed in books or in review articles. Generally, the functionalization reviews are too wide-ranging, discussing the functionalization of various materials (e.g., nanomaterials) or too specific, analyzing only one functionalization agent (with some specific chemical group, for example). This book, however, proposes to discuss the functionalization of one of the most widely used nanomaterials in recent years: graphene. Thus, the reader will find information on graphene functionalization, using several functionalization agents, in the same book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad RTM, Hong SH, Shen TZ et al (2016) Water-assisted stable dispersal of graphene oxide in non-dispersible solvents and skin formation on the GO dispersion. Carbon 98:188–194

    Article  Google Scholar 

  • Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  • Besenhard JO (1976) The electrochemical preparation and properties of ionic alkali metaland NR4-graphite intercalation compounds in organic eletrolytes. Carbon 14:111–115

    Article  Google Scholar 

  • Boehm HP, Clauss A, Fischer G et al (1962) Surface properties of extremely thin graphite lamellae. In: Proceedings of the fifth conference on carbon, p 73

    Google Scholar 

  • Bose S, Kuila T, Kim NH et al (2014) Graphene produced by electrochemical exfoliation. Woodhead Publishing Limited, pp 81–98

    Google Scholar 

  • Boukhvalov DW, Katsnelson MI (2009) Chemical functionalization of graphene. J Phys Condens Matter 21:344205

    Article  Google Scholar 

  • Cai D, Yang D, Wang D et al (2015) Tin dioxide dodecahedral nanocrystals anchored on graphene sheets with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 159:46–51

    Article  Google Scholar 

  • Çelebi C, Yanık C, Demirkol AG et al (2012) The effect of a SiC cap on the growth of epitaxial graphene on SiC in ultra-high vacuum. Carbon 50:3026–3031

    Article  Google Scholar 

  • Chatterjee SG, Chatterjee S, Ray AK et al (2015) Graphene-metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators B 221:1170–1181

    Article  Google Scholar 

  • Chen J, Li C, Eda G et al (2011) Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods. Chem Commun (Cambrigde, England) 47:6084–6086

    Google Scholar 

  • Chen C, Ru Q, Hu S et al (2015) Co2SnO4 nanocrystals anchored on graphene sheets as high-performance electrodes for lithium-ion batteries. Electrochim Acta 151:203–213

    Article  Google Scholar 

  • Chia JSY, Tan MTT, Khiew PS et al (2015) A bio-electrochemical sensing platform for glucose based on irreversible, non-covalent pi–pi functionalization of graphene produced via a novel, green synthesis metho. Sens Actuators B 210:558–565

    Article  Google Scholar 

  • Choi BG, Park H, Yang MH et al (2010) Microwave-assisted synthesis of highly water-soluble graphene towards electrical DNA sensor. Nanoscale 2:2692–2697

    Article  Google Scholar 

  • Compton OC, Jain B, Dikin DA et al (2011) Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano 5:4380–4391

    Article  Google Scholar 

  • Coraux J, N‘Diaye AT, Busse C et al (2008) Structural coherency of graphene on Ir(111). Nano Lett 8:565–570

    Article  Google Scholar 

  • Cui P, Lee J, Hwang E et al (2011) One-pot reduction of graphene oxide at subzero temperatures. Chem Commun 47:12370–12372

    Article  Google Scholar 

  • Dong XC, Xu H, Wang XW et al (2012) 3D graphene–cobalt oxide electrode for highperformance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213

    Article  Google Scholar 

  • Dreyer DR, Park S, Bielawski CW et al (2009) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  • Du X, Zhang Z, Miao Z et al (2015) One step electrodeposition of dendritic gold nanostructures on β-lactoglobulin-functionalized reduced graphene oxide for glucose sensing. Talanta 144:823–829

    Article  Google Scholar 

  • Elías AL, Méndez ARB, Rodríguez DM et al (2010) Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett 10:366–372

    Article  Google Scholar 

  • Feng SY, Ma JJ, Lin XY et al (2012) Covalent functionalization of graphene oxide by 9-(4-aminophenyl) acridine and its derivatives. Chinese Chem Lett 23:1411–1414

    Article  Google Scholar 

  • Ferreira FV, Francisco W, Menezes BRC et al (2015) Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents. Appl Surf Sci 357:2154–2159

    Article  Google Scholar 

  • Frank O, Kalbac M (2014) Chemical vapor deposition (CVD) growth of graphene films. Woodhead Publishing Limited, pp 27–49

    Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  • Georgakilas V, Otyepka M, Bourlinos AB et al (2012) Functionalization of graphene: covalent and non-covalent approaches, derivates and applications. Chem Rev 112:6156–6214

    Article  Google Scholar 

  • Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Controlled Release 173:75–88

    Article  Google Scholar 

  • Grachova Y, Vollebregt S, Lacaita AL et al (2014) High quality wafer-scale CVD graphene on molybdenum thin film for sensing application. Procedia Eng 87:1501–1504

    Article  Google Scholar 

  • Green AA, Hersam MC (2009) Graphene and its derivatives for cell biotechnology. Analyst 9:4031–4036

    Google Scholar 

  • Haldar S, Bhandary S, Bhattacharjee S et al (2012) Functionalization of edge reconstructed graphene nanoribbons by H and Fe: a density functional study. Solid State Commun 152:1719–1724

    Article  Google Scholar 

  • Han MY, Özyilmaz B, Zhang Y et al (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805

    Article  Google Scholar 

  • Hassan HMA, Abdelsayed V, Khder AERS et al (2015) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19:3832–3837

    Article  Google Scholar 

  • Hirsch A (2009) Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons. Angew Chem Int 6594–6596

    Google Scholar 

  • Ho CY, Wang HW (2015) Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode. Appl Surf 357:147–154

    Article  Google Scholar 

  • Hossain MZ, Johns JE, Bevan KH et al (2012) Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat Chem 4:305–309

    Article  Google Scholar 

  • Huang Z, Zhang H, Chen Y et al (2013) Microwave-assisted synthesis of functionalized graphene on Ni foam as electrodes for supercapacitor application. Electroc Acta 108:421–428

    Article  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  • Jayasena B, Melkote SN (2015) An investigation of PDMS stamp assisted mechanical exfoliation of large area graphene. Procedia Manuf 1:840–853

    Article  Google Scholar 

  • Ji Liangliang, Yanhong Wu, Ma Lijun et al (2015) Noncovalent functionalization of graphene with pyrene-terminated liquid crystalline polymer. Compos Part A Appl 72:32–39

    Article  Google Scholar 

  • Jiao L, Zhang L, Wang X et al (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877

    Article  Google Scholar 

  • Jo S, Park YH, Ha SG et al (2015) Simple noncovalent hybridization of polyaniline with graphene and its application for pseudocapacitor. Synthetic Met 209:60–67

    Article  Google Scholar 

  • Karamat S, Sonuşen S, Çelikd U et al (2015) Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition. Prog Nat Sci Mater Inter 25:291–299

    Article  Google Scholar 

  • Kaur P, Shin MS, Sharma S et al (2015) Non-covalent functionalization of graphene with poly (diallyl dimethylammonium) chloride: effect of a non-ionic surfactant. Int J Hydrogen Energ 40:1541–1547

    Article  Google Scholar 

  • Kim JY, Grossman JC (2015) High-efficiency thermoelectrics with functionalized graphene. Nano Lett 15:2830–2835

    Article  Google Scholar 

  • Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  Google Scholar 

  • Kim JY, Lee JH, Grossman (2012) Thermal transport in functionalized graphene. ACS Nano 6:9050–9057

    Article  Google Scholar 

  • Konios D, Stylianakis MM, Stratakis E et al (2014) Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interf Sci 430:108–112

    Article  Google Scholar 

  • Kosynkin DV, Higginbotham AL, Sinitskii A et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872

    Article  Google Scholar 

  • Kudin KN, Ozbas B, Schniepp HC et al (2007) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41

    Article  Google Scholar 

  • Kuila T, Bose S, Mishra AK et al (2012) Chemical functionalization of graphene and its applications. Prog Mat Sci 57:1061–1105

    Article  Google Scholar 

  • Kumar B, Baraket M, Paillet M et al (2016) Growth protocols and characterization of epitaxial graphene on SiC elaborated in a graphite enclosure. Phys E (Amsterdam, Neth.) 75: 7–14

    Google Scholar 

  • Layek RK, Nandi AK (2013) A review on synthesis and properties of polymer functionalized graphene. Polymer 54:5087–5103

    Article  Google Scholar 

  • Li L, Qin R, Li H et al (2011) Functionalized graphene for high-performance two-dimensional spintronics devices. ACS Nano 5:2601–2610

    Article  Google Scholar 

  • Li Y, Peng Z, Larios E et al (2015) Rebar graphene from functionalized boron nitride nanotubes. ACS Nano 9:532–538

    Article  Google Scholar 

  • Lian M, Fan J, Shi Z et al (2014) Kevlar®-functionalized graphene nanoribbon for polymer reinforcement. Polymer (United Kingdom) 55:2478–2587

    Google Scholar 

  • Liao L, Peng H, Liu Z (2014) Chemistry makes graphene beyond graphene. J Am Chem Soc 136:12194–12200

    Article  Google Scholar 

  • Lim T, Su C, Song M et al (2015) Organic solar cells with surface-treated graphene thin fi lm as interfacial layer. Synthet Metals 205:1–5

    Google Scholar 

  • Lin Z, Liu Y, Yao Y et al (2011) Superior capacitance of functionalized graphene. J Phys Chem 115:7120–7125

    Article  Google Scholar 

  • Lin YH, Yang CY, Lin SF et al (2015) Triturating versatile carbon materials as saturable absorptive nano powders for ultrafast pulsating of erbium-doped fiber lasers. Opt Mat Expr 5:236–253

    Article  Google Scholar 

  • Liu Z, Liu Q, Huang Y et al (2008) Organic photovoltaic devices based on a novel acceptor material: Graphene. Adv Mat 20:3924–3930

    Article  Google Scholar 

  • Liu H, Ryu S, Chen Z et al (2009) Photochemical reactivity of graphene. J Am Chem Soc 131:17099–17101

    Article  Google Scholar 

  • Liu M, Duan Y, Wang Y et al (2014) Diazonium functionalization of graphene nanosheets and impact response of aniline modified graphene/bismaleimide nanocomposites. Mater Design 53:466–474

    Article  Google Scholar 

  • Liu H, Kishi N, Soga T (2015a) Synthesis of thiolated few-layered graphene by thermal chemical vapor deposition using solid precursor. Mat Lett 159:114–117

    Article  Google Scholar 

  • Liu J, Liu Z, Barrow CJ et al (2015b) Molecularly engineered graphene surfaces for sensing applications: a review. Anal Chim Acta 859:1–19

    Article  Google Scholar 

  • Liu D, Zhao W. Liu S et al (2015c) Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene. Surf Coat Technol 286:354–364

    Google Scholar 

  • Liu L, Qing M, Wang Y et al (2015d) Defects in graphene: generation, healing, and their effects on the properties of graphene: a review. J Mater Sci Technol 31:599–606

    Article  Google Scholar 

  • Liu X, Han Y, Evans JW et al (2015e) Growth morphology and properties of metals on graphene. Prog Surf Sci 90:397–443

    Article  Google Scholar 

  • Lu X, Li L, Song B et al (2015) Mechanistic investigation of the graphene functionalization using p-phenylenediamine and its application for supercapacitors. Nano Energy 17:160–170

    Article  Google Scholar 

  • Lv W, Li Z, Deng Y et al (2015) Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater (in press)

    Google Scholar 

  • Maktedar SS, Mehetre SS, Singh M et al (2014) Ultrasound irradiation: a robust approach for direct functionalization of graphene oxide with thermal and antimicrobial aspects. Ultrason Sonochem 21:1407–1416

    Article  Google Scholar 

  • Malard LM, Pimenta MA, Dresselhaus G et al (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87

    Article  Google Scholar 

  • Mao HY, Lu YH, Lin JD et al (2013) Manipulating the electronic and chemical properties of graphene via molecular functionalization. Prog Surf Sci 88:132–159

    Article  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ASCNANO 4:4806–4814

    Google Scholar 

  • Márquez AGC, Macías FJR, Delgado JC et al (2009) Ex-MWCNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9:1527–1533

    Article  Google Scholar 

  • Mhamane D, Ramadan W, Fawzy M et al (2011) From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation. Green Chem 13:1990–1996

    Article  Google Scholar 

  • Mittal G, Dhand V, Rhee KY et al (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    Article  Google Scholar 

  • Mo M, Zhao W, Chen Z et al (2015) Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets. RSC Adv 5:56486–56497

    Article  Google Scholar 

  • Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476

    Article  Google Scholar 

  • Naebe M, Wang J, Amini A et al (2014) Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci Rep 4:1–7

    Article  Google Scholar 

  • Naeimi H, Golestanzadeh M, Zahraie Z et al (2016) Synthesis of potential antioxidants by synergy of ultrasound and acidic graphene nanosheets as catalyst in water. Int J Biol Macromol 83:345–357

    Article  Google Scholar 

  • Niyogi S, Bekyarova E, Itkis ME et al (2010) Spectroscopy of covalently functionalized graphene. Nano Lett 10:4061–4066

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  • Oh J, Lee JH, Koo JC et al (2010) Graphene oxide porous paper from amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microspheres. J Mater Chem 20:9200–9204

    Article  Google Scholar 

  • Oznuluer T, Pince E, Polat OA et al (2011) Synthesis of graphene on gold. Appl Phys Lett 98:183101

    Article  Google Scholar 

  • Park MS, Lee YS (2016) Functionalization of graphene oxide by fluorination and its characteristics. J Fluorine Chem 182:91–97

    Article  Google Scholar 

  • Parvez K, Yang S, Feng X et al (2015) Exfoliation of graphene via wet chemical routes. Synth Met (in press)

    Google Scholar 

  • Pinto AM, Gonçalves IC, Magalhães FD (2013) Graphene-based materials biocompatibility: a review. Colloids Surf B 111:188–202

    Article  Google Scholar 

  • Qian X, Song L, Yu B et al (2014) One-pot surface functionalization and reduction of graphene oxide with long-chain molecules: preparation and its enhancement on the thermal and mechanical properties of polyuria. Chem Eng J 236:233–241

    Article  Google Scholar 

  • Ren X, Hu Z, Hu H et al (2015) Noncovalently-functionalized reduced graphene oxide sheets by water-soluble methyl green for supercapacitor application. Mat Resear Bull 70:215–221

    Article  Google Scholar 

  • Renteria J, Legedza S, Salgado R et al (2015) Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Mater Des 88:214–221

    Google Scholar 

  • Rohini R, Katti P, Bose S (2015) Tailoring the interface in graphene/thermoset polymer composites: a critical review. Polymer 70:A17–A34

    Article  Google Scholar 

  • Sanchez VC, Jachak A, Hurt RH et al (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34

    Article  Google Scholar 

  • Sayin CS, Toffoli D, Ustunel H (2015) Covalent and noncovalent functionalization of pristine and defective graphene by cyclohexane and dehydrogenated derivatives. App Surf Sci 351:344–352

    Article  Google Scholar 

  • Shen G, Zhang X, Shen Y et al (2015) Immobilization of antibodies on aldehyde-functionalized polymer/graphene films for the fabrication of a label-free electrochemical immunosensor. J Electroanal Chem 759:67–71

    Article  Google Scholar 

  • Shin HJ, Kim KK, Benayad A et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992

    Article  Google Scholar 

  • Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  Google Scholar 

  • Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430:56–59

    Article  Google Scholar 

  • Song Y, He Z, Hou H et al (2012) Architecture of Fe3O4–graphene oxide nanocomposite and its application as a platform for amino acid biosensing. Electrochim Acta 71:58–65

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  • Su Z, Wang H, Tian K et al (2016) Simultaneous reduction and surface functionalization of graphene oxide with wrinkled structure by diethylenetriamine (DETA) and their reinforcing effects in the flexible poly (2-ethylhexyl acrylate) (P2EHA) films. Compos Part A-Appl S 84:64–75

    Article  Google Scholar 

  • Suggs K, Reuven D, Wang XQ (2011) Electronic properties of cycloaddition-functionalized graphene. J Phys Chem 115:3313–3317

    Google Scholar 

  • Terrones M, Mendez ARB, Delgado JC et al (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5:351–372

    Article  Google Scholar 

  • Toda K, Furue R, Hayami S (2015) Recent progress in applications of graphene oxide for gas sensing: a review. Anal Chim Acta 878:43–53

    Article  Google Scholar 

  • Wallace PR (1947) The band theory of graphite. Phys Rev 71:622–634

    Article  Google Scholar 

  • Wan X, Long G, Huang L et al (2011) Graphene - A promising material for organic photovoltaic cells. Adv Mat 23:5342–5358

    Article  Google Scholar 

  • Wang H, Maiyalagan T, Wang X (2012a) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 25:781–794

    Article  Google Scholar 

  • Wang X, Dong X, Wen Y et al (2012b) A graphene–cobalt oxide based needle electrode for non-enzymatic glucose detection in microdroplets. Chem Commun 48:6490–6492

    Article  Google Scholar 

  • Wang L, Liu W, Zhang Y et al (2015a) Graphene-based transparent conductive electrodes for GaN-based light emitting diodes: challenges and countermeasures. Nano Energy 12:419–436

    Article  Google Scholar 

  • Wang Y, Xie Y, Sun H et al (2015b) 2D/2D nano-hybrids of γ-MnO2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation. J Hazard Mater (in press)

    Google Scholar 

  • Wu ZS, Yang S, Sun Y et al (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134:9082–9085

    Article  Google Scholar 

  • Xia F, Farmer DB, Lin Y et al (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10:715–718

    Article  Google Scholar 

  • Xue B, Zhu J, Liu N et al (2015) Facile functionalization of graphene oxide with ethylenediamine as a solid base catalyst for Knoevenagel condensation reaction. Catal Commun 64:105–109

    Article  Google Scholar 

  • Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. App Surf Sci 266:360–367

    Article  Google Scholar 

  • Yang M, Yao J, Duan Y (2013) Graphene and its derivatives for cell biotechnology. Analyst 138:72–86

    Article  Google Scholar 

  • Yang Y, Gao F, Cai X et al (2015) β-Cyclodextrin functionalized graphene as a highly conductive and multi-site platform for DNA immobilization and ultrasensitive sensing detection. Biosens Bioelect 74:447–453

    Article  Google Scholar 

  • Yu D, Park K, Durstock M et al (2011) Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices. J Phys Chem Lett 26:1113–1118

    Article  Google Scholar 

  • Yu Z, McInnis M, Calderon J et al (2014) Functionalized graphene aerogel composites for high-performance asymmetric supercapacitors. Nano Energy 11:611–620

    Article  Google Scholar 

  • Yu P, Lowe SE, Simon GP et al (2015) Electrochemical exfoliation of graphite and production of functional graphene. Curr Opin Colloid Interface Sci (in press)

    Google Scholar 

  • Yuan B, Shi Y, Mu X et al (2016) A facile method to prepare reduced graphene oxide with a large pore volume. Mat Lett 162:154–156

    Article  Google Scholar 

  • Zarotti F, Gupta B, Iacopi F et al (2016) Time evolution of graphene growth on SiC as a function of annealing temperature. Carbon 98:307–312

    Article  Google Scholar 

  • Zhang N, Zhang Y, Xu YJ (2012a) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4:5792–5813

    Article  Google Scholar 

  • Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46:2329–2339

    Article  Google Scholar 

  • Zhang R, Li H, Zhang ZD et al (2015a) Graphene synthesis on SiC: reduced graphitization temperature by C-cluster and Ar-ion implantation. Nucl Instrum Methods Phys Res Sect B 356–357:99–102

    Article  Google Scholar 

  • Zhang L, Li Y, Wang H et al (2015b) Strong and ductile poly(lactic acid) nanocomposite films reinforced with alkylated graphene nanosheets. Chem Eng J 264:538–546

    Article  Google Scholar 

  • Zhang Y, Ma HL, Zhang Q et al (2012b) Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide. J Mater Chem 22:13064–13069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilmar Patrocínio Thim .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Ferreira, F.V. et al. (2016). Functionalization of Graphene and Applications. In: Functionalizing Graphene and Carbon Nanotubes. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-35110-0_1

Download citation

Publish with us

Policies and ethics