Skip to main content
Log in

Review of soot measurement in hydrocarbon-air flames

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Soot, which is produced in fuel-rich parts of flames as a result of incomplete combustion of hydrocarbons, is the No. 2 contributor to global warming after carbon dioxide. Developing soot measurement techniques is important to understand soot formation mechanism and control soot emission. The various soot measurement techniques, such as thermophoretic sampling particles diagnostics followed by electron microscopy analysis, thermocouple particle densitometry, light extinction, laser-induced incandescence, two-color method, and emission computed tomography, are reviewed in this paper. The measurement principle and application cases of these measurement methods are described in detail. The development trend of soot measurement is to realize the on-line measurement of multi-dimensional distributions of temperature, soot volume fraction, soot particle size and other parameters in hydrocarbon-air flames. Soot measurement techniques suitable for both small flames in laboratories and large-scale flames in industrial combustion devices should be developed. Besides, in some special situations, such as high-pressure, zero gravity and micro-gravity flames, soot measurement also should be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haynes B S, Wagner H G. Soot formation. Prog Energy Combust Sci, 1981, 7(4): 229–273

    Article  Google Scholar 

  2. Wang J T, Qi H Y, Li Y H, et al. Pyrolysis of hydrocarbons and soot formation in high temperature air combustion (in Chinese). Energy Technol, 2001, 22(5): 221–225

    Google Scholar 

  3. Smooke M D, Long M B, Connelly B C, et al. Soot formation in laminar diffusion flames. Combust Flame, 2005, 143(4): 613–628

    Article  Google Scholar 

  4. E Y, Song G L, Zhang Y, et al. Environmental effects of particulate matter of black carbon (in Chinese). Earth and Environment, 2006, 34(1): 61–64

    Google Scholar 

  5. Al-Omari S-AB, Kawajiri K, Yonesawa T. Soot processes in a methane-fueled furnace and their impact on radiation heat transfer to furnace walls. Int J Heat Mass Tran, 2001, 44(13): 2567–2581

    Article  MATH  Google Scholar 

  6. Frenklach M, Wang H. Detailed modeling of soot particle nucleation and growth. Symposium Combustion, 1991, 23(1): 1559–1566

    Article  Google Scholar 

  7. Zhong B J, Liu X F. Initial study of modeling growth of soot particles (in Chinese). J Eng Thermophys, 2004, 25(5): 894–896

    MathSciNet  Google Scholar 

  8. Jiang Y, Qiu R, Fan W C. Kinetic modeling of soot formation with detailed chemistry and physics in premixed hydrocarbon flames (in Chinese). J Combust Sci Technol, 2005, 11(3): 218–223

    Google Scholar 

  9. Dobbins R A, Megaridis C M. Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir, 1987, 3(2): 254–259

    Article  Google Scholar 

  10. Köylü Ü Ö, McEnally C S, Rosner D E, et al. Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique. Combust Flame, 1997, 110(4): 494–507

    Article  Google Scholar 

  11. Wang Y. Electric field control of soot distribution and accumulation in the flame (in Chinese). Dissertation of Doctoral Degree. Beijing: Tsinghua University, 2009

    Google Scholar 

  12. McEnally C S, Köylü Ü Ö, Pfefferle L D, et al. Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples. Combust Flame, 1997, 109(4): 701–720

    Article  Google Scholar 

  13. Snelling D R, Thomson K A, Smallwood G J, et al. Two-dimensional imaging of soot volume fraction in laminar diffusion flames. Appl Opt, 1999, 38(12): 2478–2485

    Article  Google Scholar 

  14. Arana C P, Pontoni M, Sen S, et al. Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flame. Combust Flame, 2004, 138(4): 362–372

    Article  Google Scholar 

  15. Thomson K A, Gülder Ö L, Weckman E J, et al. Soot concentration and temperature measurements in co-annular, nonpremixed CH4/air laminar flames at pressures up to 4 MPa. Combust Flame, 2005, 140(3): 222–232

    Article  Google Scholar 

  16. Melton L A. Soot diagnostics based on laser heating. Appl Opt, 1984, 23(13): 2201–2208

    Article  Google Scholar 

  17. Vander Wal R L, Ticich T M, Stephens A B. Can soot primary particle size be determined using laser induced incandescence? Combust Flame, 1999, 116(1–2): 291–296

    Google Scholar 

  18. Shaddix C R, Smyth K C. Laser-Induced Incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combust Flame, 1996, 107(4): 418–452

    Article  Google Scholar 

  19. Snelling D R, Smallwood G J, Liu F, et al. A calibration-independent laser-induced-incandescence technique for soot measurement by detecting absolute light intensity. Appl Opt, 2005, 44(31): 6773–6785

    Article  Google Scholar 

  20. Schulz C, Kock B F, Hofman M, et al. Laser-induced incandescence: Recent trends and current questions. Appl Phys B, 2006, 83(3): 333–354

    Article  Google Scholar 

  21. Wang F, Yan J H, Ma Z Y, et al. Simulation on soot concentration measurement with laser induced incandescence (in Chinese). Proc CSEE, 2006, 26(7): 6–11

    Google Scholar 

  22. Zhou H, Ladommatos N. Optical diagnostics for soot and temperature measurement in diesel engines. Prog Energy Combust Sci, 1998, 24(3): 221–255

    Article  Google Scholar 

  23. Snelling D R, Thomson K A, Smallwood G J, et al. Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA J, 2002, 40(9): 1789–1795

    Article  Google Scholar 

  24. Ai Y H. Study on profiles of the temperature and soot concentration by the radiative imaging (in Chinese). Dissertation of Doctoral Degree. Wuhan: Huazhong University of Science and Technology, 2006

    Google Scholar 

  25. Vander Wal R L. Soot precursor carbonization: Visualization using LIF and LII and comparison using bright and dark field TEM. Combust Flame, 1998, 112(4): 607–616

    Article  Google Scholar 

  26. Eisner A D, Rosner D E. Experimental studies of soot particle thermophoresis in nonisothermal combustion gases using thermocouple response techniques. Combust Flame, 1985, 61(2): 153–166

    Article  Google Scholar 

  27. Lu J. Study on measuring method of the temperature and soot volume fraction in laminar co-flow axisymmetric diffusion flames (in Chinese). Dissertation of Doctoral Degree. Wuhan: Huazhong University of Science and Technology, 2009

    Google Scholar 

  28. Xiong Q, Zhou H C, Ai Y H, et al. Numerical analysis of flame radiation and wire conduction influence in temperature measurement using thermocouple (in Chinese). J Eng Thermophys, 2007, 28(S2): 213–216

    Google Scholar 

  29. D’Alessio A, Di Lorenzo A, Borghese A, et al, Study of the soot nucleation zone of rich methane-oxygen flames. Symposium Combustion, 1977, 16(1): 695–703

    Article  Google Scholar 

  30. Santoro R J, Semerjian H G, Dobbins R A. Soot particle measurements in diffusion flames. Combust Flame, 1983, 51: 203–218

    Article  Google Scholar 

  31. Daun K J, Thomson K A, Liu F, et al. Deconvolution of axisymmetric flame properties using Tikhonov regularization. Appl Opt, 2006, 45(19): 4638–4646

    Article  Google Scholar 

  32. Åkesson E O, Daun K J. Parameter selection methods for axisymmetric flame tomography through Tikhonov regularization. Appl Opt, 2008, 47(3): 407–416

    Article  Google Scholar 

  33. Yu J, Zhang M C, Wang J, et al. Temperature measurement for CO2 and soot using FTIR emission-transmission spectra (in Chinese). J Combust Sci Technol, 2003, 9(4): 372–375

    Google Scholar 

  34. Zhou J, Pu X G, Yuan Z F. Measurements of the emissivity and temperature of a luminous gas flame by the extinction method (in Chinese). Proc CSEE, 2000, 20(6): 65–67

    Google Scholar 

  35. Liu L H, Tan H P, Yu Q Z. Inverse radiation problem in axisymmetric free flames. J Thermophys Heat Tr, 2000, 14(3): 450–452

    Article  Google Scholar 

  36. Liu L H, Man G L. Reconstruction of time-averaged temperature of non-axisymmetric turbulent unconfined sooting flame by inverse radiation analysis. J Quant Spectrosc Ra, 2003, 78(2): 139–149

    Article  Google Scholar 

  37. Eckbreth A C. Effects of laser-modulated particulate incandescence on Raman scattering diagnostics. J Appl Phys, 1977, 48: 4473–4479

    Article  Google Scholar 

  38. Dasch C J. New soot diagnostics in flames based on laser vaporization of soot. Symposium Combustion, 1985, 20(1): 1231–1237

    Article  Google Scholar 

  39. Vander Wal R L. Laser induced incandescence: Detection issues. NASA contractor report 19847, 1984

  40. Mewes B, Seitzman J M. Soot volume fraction and particle size measurements with laser-induced incandescence. Appl Opt, 1997, 36(3): 709–717

    Article  Google Scholar 

  41. Wang Y, Yao Q, He X, et al. Electric field control of soot distribution in flames using laser-induced incandescence (in Chinese). Proc CSEE, 2008, 28(8): 34–39

    Google Scholar 

  42. He X, Ma X, Wang J. Quantitative soot concentration measurement of flame by laser induced incandescence (in Chinese). J Combust Sci Technol, 2009, 15(4): 344–348

    Google Scholar 

  43. Matsui Y, Kamimoto T, Matsuoka S. A study on the time and space resolved measurement of flame temperature and soot concentration in a D.I. diesel engine by the two-color method. SAE Paper, 790491, 1979

  44. Yan J, Borman G L. Analysis and in-cylinder measurement of particulate radiant emissions and temperature in a direct injection diesel engine. SAE Paper, 881315, 1988

  45. Chen S, Liu M G, Pan K Y, et al. An improved two-color method measurement system for local transient soot concentration and flame temperature in the cylinder of diesel engines (in Chinese). Chinese Internal Combust Engine Engineering, 2001, (1): 38–41

  46. Tian X, He B Q, Wang J X, et al. Research on the combustion process of ethanol injected in the intake port ignited by diesel fuel by means of two-color method (in Chinese). Trans CSICE, 2004, 22(1): 39–44

    Google Scholar 

  47. He X, Ma X, Wu F J, et al. Visualization investigation of soot characteristics of engine fuelled with biodiesel fuel (in Chinese). Chinese Internal Combust Engine Engineering, 2009, 30(2): 1–5

    Google Scholar 

  48. Stasio S, Massoli P. Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry. Meas Sci Technol, 1994, 5(12): 1453–1465

    Article  Google Scholar 

  49. Vattulainen J, Nummela V, Hernberg R, et al. A system for quantitative imaging diagnostics and its application to pyrometric in-cylinder flame-temperature measurements in large diesel engines. Meas Sci Technol, 2000, 11(2): 103–119

    Article  Google Scholar 

  50. Lu G, Yan Y, Riley G, et al. Concurrent measurement of temperature and soot concentration of pulverized coal flames. IEEE Trans Instrum Meas, 2002, 51(5): 990–995

    Article  Google Scholar 

  51. Musculus M P B, Singh S, Reitz R D. Gradient effects on two-color soot optical pyrometry in a heavy-duty DI diesel engine. Combust Flame, 2008, 153(1–2): 216–227

    Article  Google Scholar 

  52. Weikl M C, Seeger T, Wendler M, et al. Validation experiments for spatially resolved one-dimensional emission spectroscopy temperature measurements by dual-pump CARS in a sooting flame. Proc Combust Inst, 2009, 32(1): 745–752

    Article  Google Scholar 

  53. DeIuliis S, Barbini M, Benecchi S, et al. Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation. Combust Flame, 1998, 115(1–2): 253–261

    Article  Google Scholar 

  54. Ayranc I, Vaillon R, Selcuk N, et al. Determination of soot temperature, volume fraction and refractive index from flame emission spectrometry. J Quant Spectrosc Ra, 2007, 104(2): 266–276

    Article  Google Scholar 

  55. Ayranc I, Vaillon R, Selcuk N, et al. Near-Infrared emission spectrometry measurements for nonintrusive soot diagnostics in flames. J Quant Spectrosc Ra, 2008, 109(2): 349–361

    Article  Google Scholar 

  56. Li F, Zhou H C, Lu J, et al. Experimental study on measurement of distributions of temperature and soot volume fraction in laminar flames (in Chinese). J Eng Thermophys, 2007, 28(5): 894–896

    Google Scholar 

  57. Huang Q, Wang F, Liu D, et al. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography. Combust Flame, 2009, 156(3): 565–573

    Article  Google Scholar 

  58. Huang Q X, Liu D, Wang F, et al. Soot volume fraction and temperature reconstruction model research for a symmetric diffusive C-H flame (in Chinese). Acta Physica Sinica, 2008, 57(12): 7928–7935

    Google Scholar 

  59. Ai Y H, Zhou H C. Simulation on simultaneous estimation of non-uniform temperature and soot volume fraction distributions in axisymmetric sooting flames. J Quant Spectrosc Ra, 2005, 91(1): 11–26

    Article  Google Scholar 

  60. Liu L H. Simultaneous identification of temperature profile and absorption coefficient in one-dimensional semitransparent medium by inverse radiation analysis. Int Commun Heat Mass, 2000, 27(5): 635–643

    Article  Google Scholar 

  61. Lou C, Zhou H C. Simultaneous determination of distributions of temperature and soot volume fraction in sooting flames using decoupled reconstruction method. Numer Heat Tr A-Appl, 2009, 56(1–2): 153–169

    Article  Google Scholar 

  62. Zhou H C, Lou C, Lu J. Recent achievements in measurements of soot volume fraction and temperatures in a coflow, diffuse ethylene-air flame by visible image processing. J Physics: Conference Series, 2009, 147: 012086

    Article  Google Scholar 

  63. Michelsen H A, Liu F, Kock B F, et al. Modeling laser-induced incandescence of soot: A summary and comparison of LII models. Appl Phys B, 2007, 87(3): 503–521

    Article  Google Scholar 

  64. Schraml S, Dankers S, Bader K, et al. Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII). Combust Flame, 2000, 120(4): 439–450

    Article  Google Scholar 

  65. Tan H P, Xia X L, Liu L H, et al. Numerical calculation for infrared radiative characteristics and transfer-computational thermal radiation (in Chinese). Harbin: Press of the Harbin Institute of Technology, 2006

    Google Scholar 

  66. Tan H P, Liu L H, Yi H L, et al. Recent progress in computational thermal radiative transfer. Chinese Sci Bull, 2009, 54: 4135–4147

    Article  Google Scholar 

  67. Yuan Y X, Sun W Y. Optimization theory and method (in Chinese). Beijing: Science Press, 1997

    Google Scholar 

  68. Wang Y F. Computational methods for inverse problems and their applications (in Chinese). Beijing: Higher Education Press, 2007

    Google Scholar 

  69. Zhou H C, Han S D, Sheng F, et al. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: Numerical studies. J Quant Spectrosc Ra, 2002, 72(4): 361–383

    Article  Google Scholar 

  70. Zhu J Y, Choi M Y, Mulholland G W, et al. Soot scattering measurements in the visible and near-infrared spectrum. Proc Combust Inst, 2000, 28(1): 439–446

    Article  Google Scholar 

  71. Kennedy J, Eberhart R C. Particle swarm optimization. Proc IEEE, International Conference of Neural Networks, IV, 1995, 1942–1948

    Article  Google Scholar 

  72. Dai W B, Zou P H. Research on section temperature field reconstruction of coal power fired boiler based on improved particle warm optimization algorithm (in Chinese). Proc CSEE, 2007, 27(14): 13–17

    Google Scholar 

  73. Qi H, Ruan L M, Zhang H C, et al. Inverse radiation analysis in a one-dimensional participating slab by the stochastic particle swarm optimizer algorithm. Int J Therm Sci, 2007, 46(7): 649–661

    Article  Google Scholar 

  74. Qi H, Ruan L M, Shi M, et al. Application of multi-phase particle swarm optimization technique to inverse radiation problem. J Quant Spectrosc Ra, 2008, 109(3): 476–490

    Article  Google Scholar 

  75. Qi H, Ruan L M, Wang S G, et al. Application of multi-phase particle swarm optimization technique to retrieve the particle size distribution. Chin Opt Lett, 2008, 6: 346–349

    Article  Google Scholar 

  76. Sun Y P, Lou C, Zhou H C. Simulation research of simultaneous reconstruction of distributions of temperature and soot volume fraction in axisymmetric flames using PSO method (in Chinese). Proceedings of Heat and Mass Transfer of Chinese Society of Engineering Thermophysics, 2009, 093326

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuaiChun Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, C., Chen, C., Sun, Y. et al. Review of soot measurement in hydrocarbon-air flames. Sci. China Technol. Sci. 53, 2129–2141 (2010). https://doi.org/10.1007/s11431-010-3212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-3212-4

Keywords

Navigation